
Merging taxonomies

Amélie Cordier Jean Lieber Julien Stevenot

May 11, 2012

Contents

1 Introduction 1

2 Belief revision and belief merging 3
2.1 Revision of a taxonomy by another one 4
2.2 Merging of knowledge base . 4

3 Merging taxonomies 4
3.1 Taxonomies . 4
3.2 The notion of inconsistencies in LT 5
3.3 CSµ(ψ) and MCSµ(ψ) . 7
3.4 Modelling the choice among several possibilities 7
3.5 An operator for merging taxonomies 8
3.6 Properties . 9
3.7 Revising a taxonomy by another taxonomy 12

4 The UML that could be use to make an algorithm from this
operator 14

5 Conclusion and future work 15

1 Introduction

This work is part of the Kolflow project.1 Kolflow aims at investigating
man-machine collaboration in continuous knowledge construction and this
collaboration involves to make the conjunction of knowledge from different
sources. If the conjunction of the different sources is inconsistent, a merging2

operator is needed.
1Kolflow (http://kolflow.univ-nantes.fr, code: ANR-10-CONTINT-025) is sup-

ported by the French National Research agency (ANR) and is part of the CONTINT
research program.

2Merging consistent knowledge bases consists in building a new consistent knowledge
base containing as much pieces of knowledge of them as possible.

1

http://kolflow.univ-nantes.fr

PlantFood

Fruit Vegetable

Melon

PlantFood

Fruit Vegetable

Melon

Figure 1: Two taxonomies waiting to be merged.

Kolflow uses semantic wikis as a way of representing knowledge. A good
example of semantic wiki for studying collaboration is WikiTaaable.3

This wiki must be usable for members of different teams (to simplify, the
formal part of WikiTaaable can be seen here as a kind of taxonomy,

i.e. knowledge is modelled through a class hierarchy by some concepts4

and subsumption5 relations between concepts).

There is a common stable version of WikiTaaable available on a web site
so each team6 can download it, work on it and make some updates to make
its own version of the wiki, at the same time. This process will produce
several versions of the same wiki which use similar vocabularies but which
do not necessarily agree on everything. The case could happen that one
version has been modified by a team and says “A melon is a fruit” whereas
the common one, actually on the web, says “A melon is a vegetable” (and the
two knowledge bases share the concepts Vegetable and Fruit) as modelled
in the figure 1 (where v is represented by an arrow).

If this new version is merged with the common one in order to update it,
it will be useful that the merging of these two raises a problem between “A
melon is a fruit” and “A melon is a vegetable”. Indeed, if someone knows
the concept Fruit and says that melons are vegetables without saying that
melons are fruits, he/she may mean that melons are not fruits.

The taxonomies form one of the simplest knowledge representation lan-
guage and as such are interesting to study and to use because of the low

3http://wikitaaable.loria.fr
4A concept represents a class of objects. For example Banana is the concept representing

the set of all the bananas.
5The subsumption is a relation between two concepts and allows to say that the former

represents a subset of the set represented by the latter. It is denoted by v. For example,
the formula Banana v Fruit represents the knowledge bananas are fruits (the set of
bananas is included in the set of fruits).

6Kolflow involve several teams in different places who use WikiTaaable as use case.

2

http://wikitaaable.loria.fr

time and space complexity of their classical inferences. But with the clas-
sical semantics, the conjunction of two taxonomies, i.e. the union of their
formulas, cannot be inconsistent

and, as such, cannot express all that a human could express like “Melons
are not fruits”. For example, the conjunction of the two taxonomies seen in
figure 1 is not inconsistent, it just means that melons are, at the same time,
fruits and vegetables, as presented in figure 2.

PlantFood

Fruit Vegetable

Melon

is consistent

Figure 2: The consistent result of the union (conjunction) of the two tax-
onomies of figure 1.

So how to make arise some inconsistencies during this merging? A way of
solving this issue is to increase the expressivity of the representation language
but without significantly increasing its time and space complexity. To achieve
this goal, this report proposal is to add an axiom construct for modelling
that melons are not fruits, in the case where a concept Fruit exists with the
axiom Melon v Vegetable but without the axiom Melon v Fruit.

With this addition, the conjunction of two taxonomies could raise some
contradictions. An example of contradiction is: “A melon is a fruit but is
not a vegetable” and “A melon is a vegetable but is not a fruit”. So, a
part of the modelled knowledge has to be suppressed, in order to restore
consistency. But how one could determine which part should be suppressed
and which part should be preserved? In [3], a measure of the agreement
and the disagreement between ontologies, that could be useful to make some
preferences between pieces of knowledge, is defined. Following the ideas of
this work, the idea is to preserve all the agreement and to select some pieces
of knowledge of the disagreement.

This report is organized as follows.The notions and tools that are used
in this report are defined in section 2. Section 3 is the core of this report:
it presents an approach for merging taxonomies. The section 4 show an
UML schema that could be use to design an algorithm based on the merg-
ing process. Finally, a conclusion and some future work are presented in
section 5.

3

2 Belief revision and belief merging

This section is about the minimal change theory research field in which this
report aims at contributing. Two important notions of this field are belief
revision and belief merging.

2.1 Revision of a taxonomy by another one

If one have two consistent taxonomies, one that he trust and don’t want
to change, and one that he don’t trust, he can revise the taxonomy that
he doesn’t trust by the other by making the union of them, and solve the
conflict that could arise by deleting chosen part (that are in conflict) of the
taxonomy that he doesn’t trust until he got something consistent.

In [1], some general postulates of belief revision have been proposed. Then,
in [5], some others postulates, have been proposed for the particular case
of revision in propositional logics (and equivalent to the [1]’s one in this
formalism). So the revision of a knowledge base ψ1 by another one ψ2 starts
by making the conjunction of ψ1 and ψ2 and if this conjunction is consistent,
it is the result of the revision. Else minimal modifications ψ1 7→ ψ′1 have to
be done such that ψ′1 ∧ ψ2 is consistent. ψ2 must not be modified.

2.2 Merging of knowledge base

If one have two consistent taxonomies, with the same level of trust on both
of them, he can merge these taxonomies by making the union of them, and
solve the conflict that could arise by deleting chosen part (are in conflict) of
the taxonomies that until he got something consistent.

Let ∆ be a merging operator of consistent knowledge bases ψ1, ψ2, ..., ψn.
If the conjunction of all the knowledge bases ψ1, ψ2, ..., ψn is consistent, the
result of the merging is their conjunction

V
i ψi = ψ1 ∧ ψ2 ∧ ... ∧ ψn. Else,

minimal modifications of all the bases ψ1 7→ ψ′1, ψ2 7→ ψ′2, ..., ψn 7→ ψ′n such
that ψ′1 ∧ ψ′2 ∧ ... ∧ ψ′n is consistent have to be done, and:

∆({ψ1, ψ2, ..., ψn}) ≡ ψ′1 ∧ ψ′2 ∧ ... ∧ ψ′n
Some postulates of merging, inspired from the postulates of revision, are
presented in [6].

3 Merging taxonomies

3.1 Taxonomies

The term taxonomy has been created by biologists for talking about the
classification of the species. But, etymologically, it means arrangement

4

method and is used to refer to a class hierarchy. So, here the term is used
for a class hierarchy which is represented formally by a language (called here
LT for taxonomy’s language).

LT is defined as follows (reusing the description logics notations [2]). Let
A be a countable set: A ∈ A is called a concept (only atomic concepts are
allowed in LT). A formula of LT has the form A v B where A, B ∈ A and
A 6= B,7 meaning that the concept A is more specific than the concept B
(formally: for each model ω of A v B, ω(A) ⊆ ω(B)). A taxonomy is a
knowledge base of LT (i.e., a finite set of LT formulas).

The vocabulary V(ψ) of a taxonomy ψ is defined as follows.
For A,B ∈ A, V(A v B) = {A,B}. For a taxonomy ψ, V(ψ) =

S
{V(f) |

f ∈ ψ}.
The language LT has been chosen because it is one of the simplest knowl-

edge representation languages and, as such, its inferences are of low com-
plexity, i.e. the sumbsomption test is linear for LT (it can be completed by
searching a directed path in a graph). So an efficient (in term of time and
space complexity) merging operator should be definable in this language.
And, moreover, this language is sufficient to express most of the formal
knowledge edited in WikiTaaable.

3.2 The notion of inconsistencies in LT
Let us consider ψ1 and ψ2, the two taxonomies in figures 3 and 4. ψ1 states

that melons are fruits and ψ2 states that melons are vegetables. Formally
there is no contradiction there: ψ1 (resp., ψ2) does not entail that melons
are not vegetables (resp., fruits).

PlantFood

Fruit Vegetable

Apple Melon

Figure 3: ψ1.

PlantFood

Fruit Vegetable

LeekApple Melon

Figure 4: ψ2.

More generally, if ψ1 and ψ2 are two taxonomies (two finite subsets of
LT), ψ1 ∪ ψ2 is also a taxonomy and therefore, is consistent.8

7whithout loss of expressivity, the tautologies A v A are excluded of the formalism.
8Every taxonomy is satisfiable and thus consistent. Indeed, if ψ = {Ai v Bi}i is

a taxonomy, it is satisfied by the interpretation whose domain is {1} and function ω
associates, for any i, Ai to ω(Ai) = {1} and Bi to ω(Bi) = {1}.

5

Now, when considering again ψ1 and ψ2 of figures 3 and 4, the fact that
ψ1 6|= Melon v Vegetable and ψ2 6|= Melon v Fruit may have two intuitive
interpretations:

• Either ψ1 and ψ2 are incomplete in the sense that the person in charge
of the development of ψ1 (resp., ψ2) does not know whether melons
are or are not vegetables (resp., fruits);

• Or the persons in charge of the development of ψ1 and ψ2 are in dis-
agreement: the former thinks that melons are fruits and are not veg-
etables, the latter thinks that melons are vegetables and are not fruits.

Therefore the merging of ψ1 and ψ2 should lead to a taxonomy ψ satis-
fying one of the four possibilities:

(a) ψ |= Melon v Fruit and ψ |= Melon v Vegetable

(b) ψ |= Melon v Fruit and ψ 6|= Melon v Vegetable

(c) ψ 6|= Melon v Fruit and ψ |= Melon v Vegetable

(d) ψ 6|= Melon v Fruit and ψ 6|= Melon v Vegetable

Hence, if the conjunction of two taxonomies corresponds to their union,
only situation (a) can occur. To prevent that situation, taxonomies are
considered according to a closed world assumption (CWA):

ψ 6|= A v B
A 6v B CWA

This entails that the formulas A 6v B are considered. Let L¬T be the
language of taxonomies with negations. A formula of L¬T is either a formula
of LT or a formula A 6v B for A,B ∈ A. The semantics of L¬T is as follows:
ω satisfies A 6v B if ω(A) 6⊆ ω(B).

In order to integrate the closed-world assumption in the conjunction, for
ψ an L¬T knowledge base, let Óψ be the deductive closure (including CWA)
of ψ defined by:

Óψ = {A v B | A,B ∈ V(ψ) and ψ |= A v B}
∪ {A 6v B | A,B ∈ V(ψ) and ψ 6|= A v B}

Óψ can be viewed as a clique whose vertices are elements of V(ψ) as
illustrated on figure 5 where A 6v B is represented by a dashed bracket-
headed arrow from A to B. For the sake of simplicity, in the next examples
the deductive closure will not always be graphically represented.

6

PlantFood

Fruit Vegetable

Apple Melon

Figure 5: dψ1 , with the ψ1 of figure 3.

Now, the conjunction of two taxonomies ψ1 and ψ2 (of LT or of L¬T) is
defined by:

ψ1 ∧ ψ2 =dψ1 ∪dψ2

With this definition, the conjunction of the taxonomies of the figures 3 and 4
is inconsistent since, e.g.,{Melon v Fruit, Melon 6v Fruit} ⊆ ψ1 ∧ ψ2.

With that, the merging of these two taxonomies raises two inconsistencies
(or clashes) that have to be solved:

clash1 = {Melon v Fruit, Melon 6v Fruit}
clash2 = {Melon v Vegetable, Melon 6v Vegetable}

3.3 CSµ(ψ) and MCSµ(ψ)

Let µ and ψ be two L¬T knowledge bases, such that µ is consistent. Let
CSµ(ψ) be the set of knowledge bases ϕ such that µ ⊆ ϕ ⊆ ψ ∪ µ and
ϕ is consistent (CS stands for “consistent subsets”). CSµ(ψ) 6= ∅ since
µ ∈ CSµ(ψ). Among the elements of CSµ(ψ), the largest ones for inclusion
constitute MCSµ(ψ) (MCS stands for maximal consistent subset). If ψ ∪µ
is consistent, then MCSµ(ψ) = {ψ ∪ µ}.

For example (using the notations of the previous sections), if ψ = clash1∪
clash2, then MCS∅(ψ) is composed of the four consistent knowledge bases
(a), (b), (c), and (d).

3.4 Modelling the choice among several possibilities

As pointed out above, there may be several possibilities and so, it is nec-
essary to make a choice among them. This possibility to make a choice is
represented by a preorder ≤ on the knowledge bases of L¬T such that ψ1 <
ψ2 means that ψ1 is preferred to ψ2 (ψ1 < ψ2 means that ψ1 ≤ ψ2 and
ψ2 6≤ ψ1).

7

≤ is assumed to be a total order up to the logical equivalence: it is reflexive
and transitive, if ψ1 ≤ ψ2 and ψ2 ≤ ψ1 then ψ1 and ψ2 are equivalent, and
for any ψ1 and ψ2, either ψ1 ≤ ψ2 or ψ2 ≤ ψ1. Therefore, if S is a finite set
of L¬T knowledge bases, the minimal of S for ≤ exists and is unique, modulo
equivalence, and it is denoted by Min≤(S).

Moreover, ≤ is assumed to prefer more specific knowledge bases, i.e.,
if ψ1 ⊆ ψ2 then ψ2 ≤ ψ1. This property involves that Min≤(CSµ(ψ)) =
Min≤(MCSµ(ψ)).

3.5 An operator for merging taxonomies

The merging operator presented in this section is inspired from the ideas
of agreement and disagreement of two ontologies as introduced in [3]. Let
ψ1, ψ2, ..., ψn be n consistent knowledge bases of L¬T (e.g., two taxonomies)
and E = {ψ1, ψ2, ..., ψn}. The notions introduced below are illustrated with
the taxonomies of figures 3 and 4.

The agreement α of ψ1, ψ2, ..., ψn is constituted by the pieces of knowledge
common to them. formally:

α =
\
i

Óψi =dψ1 ∩dψ2 ∩ ... ∩dψn

α is necessary consistent

(since α ⊆dψ1 that is consistent).
Figure 7 shows a representation of α.

PlantFood

Fruit Vegetable

Apple Melon

Figure 6: α: the agreement of the ψ1 and ψ2 of figures 3 and 4, represented
without the edges that can be deduced by CWA.

Definition: The disagreement is intuitively defined as the pieces of knowl-
edge that are not in agreement.9 This disagreement is defined as δ =

S
i δi

9This slightly differs from [3] where the agreement and the disagreement are not com-
plementary.

8

PlantFood

Fruit Vegetable

Apple Melon

Figure 7: α: the agreement of the ψ1 and ψ2 of figures 3 and 4, represented
without some of the edges that can be deduced by CWA. (** + clair ?**)

where δi represents the pieces of knowledge of ψi that are not in agreement
with the ψj ’s (j 6= i):

δi = Óψi \ α

Since ψi is consistent, δi is also consistent. Figures 8 and 9 illustrate δ1
and δ2.

Fruit Vegetable

Melon

Figure 8: δ1.

PlantFood

Fruit Vegetable

Apple MelonLeek

Figure 9: δ2.

So, here, δ is the union of δ1 and δ2.

Then, a subset β of δ has to be chosen. α ∪ β has to be consistent and
has to keep as much knowledge as possible, i.e. β ∈MCSα(δ). If the choice
is made according to ≤ (cf section 3.4) then:

β = Min≤(MCSα(δ))

Finally, the result of the merging is a knowledge base of LT such that:

×∆(E) = cβ
Figures 10 to 13 present the four possibilities for ∆(ψ1, ψ2), depending

on the choice ≤.

9

PlantFood

Fruit Vegetable

Apple MelonLeek

Figure 10: Result
of the merging af-
ter choosing (a).

PlantFood

Fruit Vegetable

Apple MelonLeek

Figure 11: Result
of the merging af-
ter choosing (b).

PlantFood

Fruit Vegetable

Apple MelonLeek

Figure 12: Result
of the merging af-
ter choosing (c).

PlantFood

Fruit Vegetable

Apple MelonLeek

Figure 13: Result
of the merging af-
ter choosing (d).

3.6 Properties

First, ∆ can be confronted to the postulates of [6]. These postulates are
used for characterizing a merging operator in propositional logic, but can
be reused in the LT formalism. These postulates deal with the merging of
multisets of knowledge bases, but, since for the operator ∆, the number of
occurrences has no importance, we will consider only sets of knowledge bases.

These postulates are (for E, E1, E2: sets of knowledge bases; ψ1, ψ2:
knowledge bases):

(A1) ∆(E) is consistent.

(A2) If
V
E is consistent then ∆(E) is equivalent to

V
E.

(A3) If there is a bijection F from E1 to E2 such that F (ψ) is equivalent
with ψ, then ∆(E1) is equivalent to ∆(E2) (this postulates states that
the syntax is irrelevant for ∆).

(A4) If ψ1 ∧ ψ2 is not consistent, then ∆({ψ1, ψ2}) 6|= ψ1.

(A5) ∆(E1) ∧∆(E2) |= ∆(E1 ∪ E2).

(A6) If ∆(E1) ∧∆(E2) is consistent, then ∆(E1 ∪ E2) |= ∆(E1) ∧∆(E2).

∆ satisfies (A1).

10

Indeed, ∆({ψ1, ..., ψn}) ∈MCSα(δ) and thus is consistent.

∆ satisfies (A2).

To prove it, let us assume that
V
E is consistent.

V
E =
V
i
Óψi = α ∪ δ.

Thus α∪ δ is consistent and so MCSα(δ) = {α∪ δ}. Hence ∆(E) = α∪ δ =V
E. Therefore, if

V
E is consistent then ∆(E) =

V
E which proves (A2).

∆ satisfies (A3), which states the irrelevance of syntax.

Indeed, for any knowledge bases ψ1 and ψ2 of L¬T , ψ1 is equivalent to ψ2

iffdψ1 =dψ2 . Since ∆ is defined thanks to the Óψi ’s, ∆(E) does not change
when substituting a ψi by an equivalent knowledge base.

(A4) is not satisfied by ∆ as the following counterexample shows.

Let ψ1 = {A v B} and ψ2 = {A 6v B}. Then dψ1 = {A v B,B 6v A}
and dψ2 = {A 6v B,B 6v A}. ψ1 ∧ ψ2 = {A v B,A 6v B,B 6v A},
α = {B 6v A}, δ1 = {A v B}, δ2 = {A 6v B}, δ = {A v B,A 6v B},
MCSα(δ) = {{A v B,B 6v A}, {A 6v B,B 6v A}}.

Thus according to the choice performed by ≤, ∆({ψ1, ψ2}) |= ψ1 or
∆({ψ1, ψ2}) |= ψ2. (A4) is called in [6] the fairness property: it states
that ∆ should not make a preference between the knowledge bases to be
merged. Our interpretation of the non fairness of our operator is that the
L¬T language does not permit to express disjunctions and so, the operator
has to make a choice (that is why ≤ has to be a total order).

Indeed, let us consider L¬∨T the extension of L¬T with disjunction: if ψ1

and ψ2 are L¬T knowledge bases, then ψ1 ∨ψ2 is an L¬∨T knowledge base and
ω satisfies it if ω satisfies ψ1 or ω satisfies ψ2. Now,let ∇ be the merging
operator defined by ∇(E) =

W
MCSα(δ)(E: a set of L¬T knowledge bases,

∇(E): an L¬∨T knowledge base). ∇ satisfies (A1), (A2), and (A3) (similar
proofs than the proofs for ∆) and it satisfies also (A4):

Proof. Let ψ1, ψ2 be two consistent L¬T knowledge bases such that ψ1 ∧ ψ2

is consistent. Thus, α = dψ1 ∩dψ2 , β1 = dψ1 \ α, β2 = dψ2 \ α. α ∪ β1 =
dψ1 and α ∪ β2 = dψ2 are consistent, so there exist φ1 and φ2 such that
φi ∈MCSα(ψ1 ∧ψ2), Óψi ⊆ φi(i ∈ {1, 2}), and φ1 ∪ φ2 is inconsistent (since
φ1 ∪ φ2 ≡ dψ1 ∪dψ2 = ψ1 ∧ ψ2 that is inconsistent). Therefore φ1 ∧ φ2 |=
∇({ψ1, ψ2}), φ1 ∧ φ2 6|= φ1 (since φ1 6|= φ2), φ1 ∧ φ2 6|= φ2 (since φ2 6|= φ1).
Hence, ∇({ψ1, ψ2}) 6|= φi for i ∈ {1, 2}.

11

This is why the non fairness of ∆ is interpreted as a consequence of the
necessity to make choices, in the L¬T formalism.

At this point, we have neither proven that ∆ satisfies (A5) and/or (A6),
nor found any counterexample.

A detailed complexity analysis has still to be carried out.

However, a naive algorithm for ∆ gives a polynomial complexity for the
computation α and δ and an exponential complexity for the computation of
MCSα(δ) (exponential in the size of δ). Therefore, with this algorithm, the
computation of ∆ is tractable when the taxonomies are similar. Indeed δ =S
i
Óψi −TiÓψi contains the formulas that are not shared by the taxonomies,

so |δ| can be used to characterize the dissimilarities of the ψi’s. Hence making
frequents merging of taxonomies that have forked from a same taxonomy is
useful. 10

3.7 Revising a taxonomy by another taxonomy

Reusing the previously seen notations, a revision operatoru on taxonomies
can be defined:

ψ1 u ψ2 = Min≤(MCSÓψ2
(dψ1 ∪dψ2))

where ψ1 and ψ2 are two taxonomies (or, more generally, two L¬T knowledge
bases). This means that the revision of ψ1 by ψ2 is chosen among the knowl-
edge bases that entail ψ2 and makes a minimal generalisation on ψ1 (which
is consistent with the intuitive definition of revision given in section 2).

The properties of this revision operator remains to be studied, in par-
ticular, according to the postulates of [5]. Its complexity is similar to the
complexity of ∆ and thus remains tractable.

10This can be likened to the usefulness of frequent commits in a version management
system like subversion, as noticed by Fabien Gandon. Thanks for this relevant remark,
Fabien !

12

13

4 The UML that could be use to make an algorithm
from this operator

Figure 14: The UML schema

14

5 Conclusion and future work

This report has presented an operator for merging similar taxonomies that
satisfies a subset of the postulates defined in [6] but some proof are still to
be done.

Why is this algorithm useful for Kolflow ?

• With this algorithm, the user don’t have to download and update the
whole taxonomy in order to add just a few knowledge. He can just
submit his own knowledge.

• Compare to the previous system where the user submit a full consistent
ontology, containing all the knowledge he want to add, which is rejected
or not by the test campaign, here, even if all his knowledge are not
accepted, a part of it can be preserved and integrate to the system.

• We could keep traces of the choices of the users and use it to improve
the choice method.

In conclusion, the operator presented herein seems to address Kolflow’s
issues for taxonomy merging. There is still work to do in order to study its
properties and to design an efficient algorithm.

This operator is used to design an efficient algorithm for this merging
when the taxonomies are similar, which is the case when they are originated
from the same taxonomy and have not diverged for a too long time. This
algorithm, in order to be efficient, should not computeÓψ (this operation is
too complex and is too time and space consuming: |Óψ | = |V(ψ)|2− |V(ψ)|).

The design of such an algorithm involves that the relation ≤ has to be
specified. Indeed, the operator presented in this report is based on the
maximal consistent subsets of formulas issued from the conjunction of the
knowledge bases to be merged. The relation ≤ has to define a preference
order between these subsets of formulas. One possibility for specifying ≤
is to ask a human user but it implies the loss of some properties like the
determinism that could be seen as desirable and it raises another question:
how to present these choices to the user? The merging of two big taxonomies
could lead to a great number of choices. So it could be a good thing to
only pop up the most relevant ones. For example, in the previously seen
example, there were four possibilities. One can think that when there is two
inconsistent minimal subsets like {A v B,A 6v B} and {A v C,A 6v C}, the
two relevant choices should be (A v B and A 6v C) or (A v C and A 6v B).
The way this choice can be formalized is another relevant issue for future
work.

15

Another way to specify the relation ≤ is to take into account a history of
the previous choices, i.e., for example, if the choices between two knowledge
bases φ1 and φ2 has already been done in the past, ≤ will choose the same
that have been chosen. This idea remains to be studied in details.

Once this algorithm is efficiently implemented, it could be used, in the
Kolflow project, for example, to update the previously seen common version
of WikiTaaable. But Kolflow does not limit itself to LT and there is a large
spectrum of languages ranging from LT to, e.g., OWL DL. One advantage
of LT is that its inferences are much less complex than OWL DL’s (e.g.,
the sumbsumption test is linear for LT whereas it is NExpTime-hard in
OWL DL). The question we intend to address in a future work is what are
the extensions of LT for which we will design a merging operator. Since LT
can be considered as the fragment of RDFS with only one possible properties,
SubClassOf (corresponding to v), some larger fragments should be consid-
ered (using other properties). Indeed in the particular case of WikiTaaable,
some properties are more used or important and some are easier to com-
pute than other ones so one can think of a kind of anytime approach where
the algorithm will consecutively consider the RDFS properties starting by
subClassOf.

A kind of equivalent to the MCS is the MUPS that are used in the
system Pellet:11 this system contains a tool for debugging inconsistent on-
tologies which allows to find the MUPS [4] of an inconsistent ontology. A
MUPS (Minimal Unsatisfiability Preserving Sub-TBoxes) is a minimal sub-
set of axioms which causes the inconsistency. If we find all the MUPS of
a knowledge base issued from the conjunction of two other ones, the set of
all the possible consistent knowledge bases made from the conjunction of all
the MUPS after deleting one formula on each of them, is equivalent to the
MCS. As Pellet works on knowledge bases on OWL DL it could be a lead
to pass from L¬T to OWL DL. It also could allow to compare our algorithm
to the results of Pellet’s debugging tool.

References

[1] C. E. Alchourrón, P. Gärdenfors, and D. Makinson. On the Logic of The-
ory Change: partial meet functions for contraction and revision. Journal
of Symbolic Logic, 50:510–530, 1985.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation and Applications. Cambridge University Press, Cambridge,
2003.

11http://clarkparsia.com/pellet/

16

http://clarkparsia.com/pellet/

[3] M. d’Aquin. Formally measuring agreement and disagreement in ontolo-
gies. In Proceedings of the fifth international conference on Knowledge
capture, K-CAP ’09, pages 145–152, New York, NY, USA, 2009. ACM.

[4] B. C. Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Debugging OWL
ontologies. pages 633–640, 2005.

[5] H. Katsuno and A. Mendelzon. Propositional knowledge base revision
and minimal change. Artificial Intelligence, 52(3):263–294, 1991.

[6] S. Konieczny and R. Pino-Pérez. On the logic of merging, 1998.

17

	Introduction
	Belief revision and belief merging
	Revision of a taxonomy by another one
	Merging of knowledge base

	Merging taxonomies
	Taxonomies
	The notion of inconsistencies in LT
	CS() and MCS()
	Modelling the choice among several possibilities
	An operator for merging taxonomies
	Properties
	Revising a taxonomy by another taxonomy

	The UML that could be use to make an algorithm from this operator
	Conclusion and future work

