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Context - Task 5

● Goal: design and 
experiment a social 
semantic space where 
humans and smart agents 
can collaborate to produce 
knowledge understandable 
by humans and machines...

● The streams of knowledge 
being produced are 
continuous.

● Closest we have now: 
Linked Data.
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Context – Linked Data as SSS

● Linked Data has semantics, knowledge, humans and 
machines.

● But is just datasets publishing and interlinking. It is not 
editable.

 No edition →  no collaboration → no SSS
● How to allow collaborative editing of datasets?

 Right now, copying is the only general solution 
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Context – DBPedia went Live
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● Continuous stream the inserted and deleted triples...

● Linking extends to follow/pull your changes....

● If I follow your changes and you follow mine, we can improve both 
datasets → Collaboration!
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Live Linked Data

● A social network for Linked Data Participants based 
on a “follow your change”  relationship.

● Makes Linked Data Editable

 Thus, collaborative.

 From Linked Data 1.0 to 2.0
● Data at each node is fresh.
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Live Linked Data

● When participants start 
updating datasets:

● We don't know who 
consumes from who...

● Can get my own updates, 
multiple updates, 
conflicts... 

● What consistency criteria? 
And how to ensure it?

Store 1

Store 2

Store 3

Linked Data Cloud
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Live Linked Data

● Allow temporal divergence between replicas → The 
consistency is eventual.

● Each linked data node:
 Executes SPARQL Update queries locally.

 Publishes these operations in “Live Streams” 

 Other nodes consume and re-execute them.

● The system is correct if Convergence, Causality and Intention 
hold.
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SU-Set

Same id for all triples in-
serted together saves 
communication

Abstract operation is 
Sparql Update

Delete all pairs associa-
ted to each triple. 
Can be expensive. 
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What is the price to pay?

● Time Overhead :
 Adding an id to each element  is linear.

 Selection and lookup is not afected by many pairs with the 
same triple.

● Round and # of messages Overhead :
 Convergence after one round, one message per opera-

tion → Optimal
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Validation -Price in space

Two UUIDs, 16 bytes each

(UUID1, UUID2)
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Communication Cost

●  DBPedia Live generates one fle with triples inserted and one 
with triples deleted approximately each 10 seconds.

● No pattern operations → No overhead here.

● Many more insertions than deletions

 Insertions are cheap, they only need one id.
● Many triples per insertion

 More triples inserted at a time is cheaper.
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Communication Cost in DBPedia Live

Operation # of Triples No ids 1 id per triple 1 id per ope-
ration

21957
Inserts

21762190 3403,4 4469,89 3404,6

21957
Deletes

1755888 238,46 324,5 324,5

Overhead 31,64% 2,39%

Communication (MB)7 days of streaming
No concurrent insertions

● Under this change rate and insert/delete ratio the overhead is acceptable. 
Broader complexity analysis submitted to special issue of IJMSO 
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So far we have...

● A CRDT for RDF-Graph updated with SPARQL 1.1

 Allows to synchronize semantic stores with even-
tual consistency.

● Biggest prices to pay are in communication :

 ID overhead.

 Causal delivery maintenance overhead.
● Theoretical estimates of this overhead.
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Current Work - Implementation

● Test Cases based on SPARQL 1.1 specification 
developed and coded in JUnit. 
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Insert (ground triples)

SPARQL Operation:

PREFIX dc: <http://purl.org/dc/elements/1.1/>

INSERT DATA

{ <http://example/book1> dc:title "A new book" ;

                        dc:creator "A.N.Other" .}

Local Data Before:

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix ns: <http://example.org/ns#> .

[id-1-1,<http://example/book1>, ns:price , 42]

Local Data After:

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix ns: <http://example.org/ns#> .

[id-1-1,<http://example/book1>, ns:price , 42]

[id-1-2,<http://example/book1>, dc:title , “A new book”]

[id-1-2,<http://example/book1>, dc:creator , “A.N.Other”]
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1) Two concurrent inserts

Site1 arrival: {id-1-1 -> (

[<http://example/president25>, foaf:givenName ,"William"]

    [<http://example/president25> ,foaf:familyName, "McKinley"])}

Site2 arrival: {id-2-1 -> (

[<http://example/president25>, foaf:givenName ,"Will"]

    [<http://example/president25> ,foaf:familyName, "McKinley"])}

Data Before:

[id-3-10, <http://example/president25>, foaf:givenName ,"William"]

[id-3-40, <http://example/president25> ,foaf:familyName, "McKinley"]

Data After:

[id-3-10, <http://example/president25>, foaf:givenName ,"William"]

[id-2-1, <http://example/president25>, foaf:givenName ,"Will"]

[id-1-1, <http://example/president25>, foaf:givenName ,"William"]

[id-3-40, <http://example/president25> ,foaf:familyName, "McKinley"]

[id-1-1, <http://example/president25> ,foaf:familyName, "McKinley"]

[id-2-1, <http://example/president25> ,foaf:familyName, "McKinley"]
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Implementation

● Alpha Version of SU-Set implemented into Corese

 Interface tagger, for ID assignation

 Interface Listener, to log operations, maintain list 
of neighbors, broadcast, pull, or whatever we 
want.

● The work on a full version is proposed for Luis' eventual 
stay at Sophia.
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Implementation - Causality

● Vector clocks are traffic cheap, but they require 
global knowledge of network's membership

 Too high when members change often =(

● As DBPedia Live publishes an operation log, an 
AntiEntropy¹ scheme is more suitable.

 No membership.

 ID smaller (no vector). 

 Needs more communication.

 Need to recalculate theoretical overhead.

¹ A. Demers et. al. Epidemic Algorithms for Replicated Database Maintenance. Xerox 
Palo Alto TechReport 1989, based on earlier version in ACM PDC 1987 
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Proposed Validation

● Is Live Linked Data feasible with real datastores?

● DBPediaLive is by far the worst case in combination 
of size and change rate...

 If a LLD full of DBPedias work, normal one 
should work...
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Experimentation – Local Overhead
● Does the new ID breaks or slows down the semantic 

store?

● Run Berlin (the most used) and DBPedia SPARQL (the 
one associated to DBPedia) benchmarks over Corese 
with and without SU-Set. Extra variables are :

 Probability of concurrent insertion of the same element 
(Duplicates) 

 Maximum number of duplicates per triple (Number of 
Nodes)

● Does our “acceptable” time/space overhead computation 
holds?

● At which values we make the system explode?
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Experiments - Communication
● Does our theoretical computation of overhead holds?

● Worst case analysis :

 Everybody consumes from everybody.

 All nodes update concurrently.

DB1 DB2

DB3 DB4

#Nodes

# of Messages

N² 
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Experiments - Communication

● What happens in topologies closer to reality?:
 Social networks (Reciprocal links, scale-free proper-

ties)

 Twitter-like (Non-reciprocal, scale-free properties ex-
cept for most popular nodes)

 The Linked Open Data Graph (LOD) graph itself.
● Assumptions: 

 No failures

 No ontology conflicts (another task for that)
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Experiments - Variables

● Number of Semantic Stores (SS)

● Number of triples at each SS ← DBPedia's 1Billion.

● Size of unique id ← Depends on Causality protocol.

● Change rate and ratio of inserted/deleted triples for each 
node   ←  DBPedia figures (0.0006% per minute and 
12:1), but interesting to measure (DYLDO initiative). 

 Our previous seven days of measuring are 
enough?
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Experiments - Variables

● Operation “chunk” size ← Bigger chunk less overhead, but 
less freshness, we take DBPedia values (Avg. 170kb).

● Duplicate percentage and maximum number.

● Measure traffic and number of messages :

 Does our theoretical estimates hold?

 How much is due to causal delivery maintenance? - 
We will need to recompute that. It is the heaviest 
part? We will need something else?
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Future Work

● Can we construct a CRDT for RDF without the costly causal 
delivery (or a weaker condition)?

● Can we implement the pattern operations to reduce traffic?

● Or can we prove we can't?

● How about querying? (Sync & Search?)
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Experimentation – Sync & Search

● Goal : Compare Sync & Search with Warehousing and 
Distributed Searching (FedX) → Who is better in which case ?

● New parameter: Number of queries per time unit.

● We expect 

 Sync & Search better when there are many queries 
and moderate change rate.

 Warehouse better when size of stores is manageable 
and low change rate.

 Distributed search better when query number low. 
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Experimentation – Sync & Search
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Warehouse depends on :
Total size of stores

Sync & Search depends on :
Total size of stores (1st Time)
Change rate (thereafter)

Distributed Search, depends on :
* Number and availability of 
SPARQL endpoints
* Number of triples fetched 

How this points 
move varying :
Size of Query 
Size of stores
Change Rates
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