
Towards a Social Semantic
Space with Linked Data

Luis Daniel Ibáñez1, Hala Skaf-Molli1, Pascal Molli1 and Olivier Corby2

1GDD – Université de Nantes
2Wimmics – INRIA Sophia-Antipolis

2

Context - Task 5

● Goal: design and
experiment a social
semantic space where
humans and smart agents
can collaborate to produce
knowledge understandable
by humans and machines...

● The streams of knowledge
being produced are
continuous.

● Closest we have now:
Linked Data.

3

Context – Linked Data as SSS

● Linked Data has semantics, knowledge, humans and
machines.

● But is just datasets publishing and interlinking. It is not
editable.

 No edition → no collaboration → no SSS
● How to allow collaborative editing of datasets?

 Right now, copying is the only general solution

4

Context – DBPedia went Live

DBPedia

URI
Burner

Freebase

Open
Calais

iServer

Daily
Med TCM

Gene

Project
Gutenberg

● Continuous stream the inserted and deleted triples...

● Linking extends to follow/pull your changes....

● If I follow your changes and you follow mine, we can improve both
datasets → Collaboration!

DBPedia

URI
Burner

Freebase

Open
Calais

iServer

Daily
Med TCM

Gene

Project
Gutenberg

5

Live Linked Data

● A social network for Linked Data Participants based
on a “follow your change” relationship.

● Makes Linked Data Editable

 Thus, collaborative.

 From Linked Data 1.0 to 2.0
● Data at each node is fresh.

6

Live Linked Data

● When participants start
updating datasets:

● We don't know who
consumes from who...

● Can get my own updates,
multiple updates,
conflicts...

● What consistency criteria?
And how to ensure it?

Store 1

Store 2

Store 3

Linked Data Cloud

7

Live Linked Data

● Allow temporal divergence between replicas → The
consistency is eventual.

● Each linked data node:
 Executes SPARQL Update queries locally.

 Publishes these operations in “Live Streams”

 Other nodes consume and re-execute them.

● The system is correct if Convergence, Causality and Intention
hold.

8

SU-Set

Same id for all triples in-
serted together saves
communication

Abstract operation is
Sparql Update

Delete all pairs associa-
ted to each triple.
Can be expensive.

9

What is the price to pay?

● Time Overhead :
 Adding an id to each element is linear.

 Selection and lookup is not afected by many pairs with the
same triple.

● Round and # of messages Overhead :
 Convergence after one round, one message per opera-

tion → Optimal

10

Validation -Price in space

Two UUIDs, 16 bytes each

(UUID1, UUID2)

Site identifier Vector clock

S
e
m
a
n
ti
c
S
t
o
r
e
s
a
lr
e
a
d
y
u
s
e
a
n
i
n
t
e
r
n
a
l
i
d
→

R
e
u
s
e
it

3
2
b
y
t
e
s
p
e
r
1
b
il
li
o
n
t
ri
p
l
e
s

=
3
2
G
B

→

1
I
p
o
d

E
x
t
r
a
p
a
ir
s
p
r
o
d
u
c
e
d
b
y
c
o
n
c
u
r
r
e
n
t
i
n
s
e
r
ti
o
n
s
c
o
u
l
d
c
a
u
s
e
p
r
o
b
l
e
m
s
..
.

11

Communication Cost

● DBPedia Live generates one fle with triples inserted and one
with triples deleted approximately each 10 seconds.

● No pattern operations → No overhead here.

● Many more insertions than deletions

 Insertions are cheap, they only need one id.
● Many triples per insertion

 More triples inserted at a time is cheaper.

12

Communication Cost in DBPedia Live

Operation # of Triples No ids 1 id per triple 1 id per ope-
ration

21957
Inserts

21762190 3403,4 4469,89 3404,6

21957
Deletes

1755888 238,46 324,5 324,5

Overhead 31,64% 2,39%

Communication (MB)7 days of streaming
No concurrent insertions

● Under this change rate and insert/delete ratio the overhead is acceptable.
Broader complexity analysis submitted to special issue of IJMSO

13

So far we have...

● A CRDT for RDF-Graph updated with SPARQL 1.1

 Allows to synchronize semantic stores with even-
tual consistency.

● Biggest prices to pay are in communication :

 ID overhead.

 Causal delivery maintenance overhead.
● Theoretical estimates of this overhead.

14

Current Work - Implementation

● Test Cases based on SPARQL 1.1 specification
developed and coded in JUnit.

15

Insert (ground triples)

SPARQL Operation:

PREFIX dc: <http://purl.org/dc/elements/1.1/>

INSERT DATA

{ <http://example/book1> dc:title "A new book" ;

 dc:creator "A.N.Other" .}

Local Data Before:

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix ns: <http://example.org/ns#> .

[id-1-1,<http://example/book1>, ns:price , 42]

Local Data After:

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix ns: <http://example.org/ns#> .

[id-1-1,<http://example/book1>, ns:price , 42]

[id-1-2,<http://example/book1>, dc:title , “A new book”]

[id-1-2,<http://example/book1>, dc:creator , “A.N.Other”]

16

1) Two concurrent inserts

Site1 arrival: {id-1-1 -> (

[<http://example/president25>, foaf:givenName ,"William"]

 [<http://example/president25> ,foaf:familyName, "McKinley"])}

Site2 arrival: {id-2-1 -> (

[<http://example/president25>, foaf:givenName ,"Will"]

 [<http://example/president25> ,foaf:familyName, "McKinley"])}

Data Before:

[id-3-10, <http://example/president25>, foaf:givenName ,"William"]

[id-3-40, <http://example/president25> ,foaf:familyName, "McKinley"]

Data After:

[id-3-10, <http://example/president25>, foaf:givenName ,"William"]

[id-2-1, <http://example/president25>, foaf:givenName ,"Will"]

[id-1-1, <http://example/president25>, foaf:givenName ,"William"]

[id-3-40, <http://example/president25> ,foaf:familyName, "McKinley"]

[id-1-1, <http://example/president25> ,foaf:familyName, "McKinley"]

[id-2-1, <http://example/president25> ,foaf:familyName, "McKinley"]

17

Implementation

● Alpha Version of SU-Set implemented into Corese

 Interface tagger, for ID assignation

 Interface Listener, to log operations, maintain list
of neighbors, broadcast, pull, or whatever we
want.

● The work on a full version is proposed for Luis' eventual
stay at Sophia.

18

Implementation - Causality

● Vector clocks are traffic cheap, but they require
global knowledge of network's membership

 Too high when members change often =(

● As DBPedia Live publishes an operation log, an
AntiEntropy¹ scheme is more suitable.

 No membership.

 ID smaller (no vector).

 Needs more communication.

 Need to recalculate theoretical overhead.

¹ A. Demers et. al. Epidemic Algorithms for Replicated Database Maintenance. Xerox
Palo Alto TechReport 1989, based on earlier version in ACM PDC 1987

19

Proposed Validation

● Is Live Linked Data feasible with real datastores?

● DBPediaLive is by far the worst case in combination
of size and change rate...

 If a LLD full of DBPedias work, normal one
should work...

20

Experimentation – Local Overhead
● Does the new ID breaks or slows down the semantic

store?

● Run Berlin (the most used) and DBPedia SPARQL (the
one associated to DBPedia) benchmarks over Corese
with and without SU-Set. Extra variables are :

 Probability of concurrent insertion of the same element
(Duplicates)

 Maximum number of duplicates per triple (Number of
Nodes)

● Does our “acceptable” time/space overhead computation
holds?

● At which values we make the system explode?

21

Experiments - Communication
● Does our theoretical computation of overhead holds?

● Worst case analysis :

 Everybody consumes from everybody.

 All nodes update concurrently.

DB1 DB2

DB3 DB4

#Nodes

of Messages

N²

22

Experiments - Communication

● What happens in topologies closer to reality?:
 Social networks (Reciprocal links, scale-free proper-

ties)

 Twitter-like (Non-reciprocal, scale-free properties ex-
cept for most popular nodes)

 The Linked Open Data Graph (LOD) graph itself.
● Assumptions:

 No failures

 No ontology conflicts (another task for that)

23

Experiments - Variables

● Number of Semantic Stores (SS)

● Number of triples at each SS ← DBPedia's 1Billion.

● Size of unique id ← Depends on Causality protocol.

● Change rate and ratio of inserted/deleted triples for each
node ← DBPedia figures (0.0006% per minute and
12:1), but interesting to measure (DYLDO initiative).

 Our previous seven days of measuring are
enough?

24

Experiments - Variables

● Operation “chunk” size ← Bigger chunk less overhead, but
less freshness, we take DBPedia values (Avg. 170kb).

● Duplicate percentage and maximum number.

● Measure traffic and number of messages :

 Does our theoretical estimates hold?

 How much is due to causal delivery maintenance? -
We will need to recompute that. It is the heaviest
part? We will need something else?

25

Future Work

● Can we construct a CRDT for RDF without the costly causal
delivery (or a weaker condition)?

● Can we implement the pattern operations to reduce traffic?

● Or can we prove we can't?

● How about querying? (Sync & Search?)

26

Experimentation – Sync & Search

● Goal : Compare Sync & Search with Warehousing and
Distributed Searching (FedX) → Who is better in which case ?

● New parameter: Number of queries per time unit.

● We expect

 Sync & Search better when there are many queries
and moderate change rate.

 Warehouse better when size of stores is manageable
and low change rate.

 Distributed search better when query number low.

27

Experimentation – Sync & Search

#Queries per time/unit

T
ra

ffi
c

/
E

xe
c

T
im

e

Warehouse depends on :
Total size of stores

Sync & Search depends on :
Total size of stores (1st Time)
Change rate (thereafter)

Distributed Search, depends on :
* Number and availability of
SPARQL endpoints
* Number of triples fetched

How this points
move varying :
Size of Query
Size of stores
Change Rates

	Title
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27

