Towards an operator for merging taxonomies

Amélie Cordier,¹ Jean Lieber,²³⁴ Julien Stevenot²³⁴

- ¹ Université de Lyon 1, CNRS, LIRIS, UMR5205, amelie.cordier@liris.cnrs.fr
- ² Université de Lorraine, LORIA, UMR 7503 Vandœuvre-lès-Nancy, F-54506, France, jean.lieber@loria.fr, julien.stevenot@loria.fr
- ³ CNRS, LORIA, UMR 7503 Vandœuvre-lès-Nancy, F-54506, France
- ⁴ Inria Villers-lès-Nancy, F-54602, France

Taaable (http://taaable.fr) WikiTaaable (http://wikitaaable.loria.fr) Kolflow project (http://kolflow.univ-nantes.fr)

Outline of the talk

- Context and motivation
- Merging taxonomies
- Conclusion and future work

Context and motivation

Taaable and WikiTaaable http://taaable.fr http://wikitaaable.loria.fr

- ► Taaable: a CBR system that reuses a cooking recipe base
- WikiTaaable: a semantic wiki for the Taaable knowledge base including a taxonomical domain ontology

DSMW

- MW = MediaWiki, a wiki engine
- SMW = Semantic MW, a semantic wiki engine
- DSMW = Distributed SMW
 - Several WikiTaaables

 Man-machine collaboration in continuous knowledge construction flows

- Man-machine collaboration in continuous knowledge construction flows
- Merging the contents of two semantic wikis

- Man-machine collaboration in continuous knowledge construction flows
- Merging the contents of two semantic wikis
 - The textual parts

- Man-machine collaboration in continuous knowledge construction flows
- Merging the contents of two semantic wikis
 - The textual parts

Kolflow

The knowledge parts

- Man-machine collaboration in continuous knowledge construction flows
- Merging the contents of two semantic wikis
 - The textual parts

- The knowledge parts
- Often, the two semantic wikis come from another one, so they are quite similar

Knowledge representation in a semantic wiki: mainly class-superclass relations

🔶 🄶 🗋 wikita	aable. loria.fr /index.php/Category:Melon	😭 🔻 🥙 🚼 🕶 Google	۹	ò
WIKIT	AAABLE3CCC	MAIN PAGE ABOUT HELP FAQ SPEC	IAL PAGES LOG IN	Î
			Category: Fruit	
Find		Printable version Disclaime	ers <u>Privacy policy</u>	:
Go Search Browse	Category:Melon From Wikitaaable3ccc			
<u>Main page</u> <u>Recipe list</u> <u>Food Ontology</u> <u>Dish types</u>	Description		-	
Dish roles Origins Diets Culinary actions	Melon is a name given to various members of the plant fan flavoured, fleshy fruit e.g. gourds or cucurbits. Melon can b			

Knowledge representation in a semantic wiki: mainly class-superclass relations

🔶 🄿 📋 wikita	aable. loria.fr /index.php/Category:Melon	<u></u>	🔻 🤁 🚼 🔻 Google	Q	
WIKIT	AAABLE3CCC	MAIN PAGE ABC	DUT HELP FAQ SPECIAL PA	AGES LOG	N
			Ca	tegory: Frui	it
Find		Printab	ole version Disclaimers P	rivacy polic	y.
Go Search Browse	Category:Melon From Wikitaaable3ccc				
<u>Main page</u> <u>Recipe list</u> <u>Food Ontology</u> Dish types	Description				
Dish roles Origins Diets Culinary actions	Description Melon is a name given to various members of the plant flavoured, fleshy fruit e.g. gourds or cucurbits. Melon ca			-	

 $Melon \sqsubseteq Fruit$

Knowledge representation in a semantic wiki: mainly class-superclass relations

🔶 🄶 🗋 wikita	aable. loria.fr /index.php/Category:Melon	<u>ن</u>	▼ 🕑 🚼 ▼ Google	Q	
WIKIT	AAABLE3CCC	MAIN PAGE ABOU	JT HELP FAQ SPECIAL P	AGES LOG	N
			C	ategory: Fru	it
Find		Printabl	e version Disclaimers]	Privacy polic	y
Go Search Browse Main page Recipe list	Category:Melon From Wikitaaable3ccc				
Food Ontology Dish types Dish roles	Description				
Origins Diets Culinary actions	Melon is a name given to various members of the plant far flavoured, fleshy fruit e.g. gourds or cucurbits. Melon can b				
	$\texttt{Melon} \sqsubseteq \texttt{F}$	ruit			

 $\forall x \quad \texttt{Melon}(x) \Rightarrow \texttt{Fruit}(x)$

Merging taxonomies

Taxonomy language

L_T: language of taxonomies
 A formula of *L_T*: A ⊑ B
 Deductive inferences based on the transitivity of ⊑

Taxonomy language

- *L_T*: language of taxonomies
 A formula of *L_T*: A ⊑ B
 Deductive inferences based on the transitivity of ⊑
- A taxonomy ψ : a finite set of formulas of $\mathcal{L}_{\mathcal{T}}$

Taxonomy language

- *L_T*: language of taxonomies
 A formula of *L_T*: A ⊑ B
 Deductive inferences based on the transitivity of ⊑
- A taxonomy ψ : a finite set of formulas of $\mathcal{L}_{\mathcal{T}}$
- Example:

$$\psi = \left\{ egin{array}{ll} { t Apple} \sqsubseteq { t Fruit}, & { t Melon} \sqsubseteq { t Fruit}, \ { t Fruit} \sqsubseteq { t PlantFood}, & { t Vegetable} \sqsubseteq { t PlantFood}
ight\} \ \mathcal{V}(\psi) = \{ { t Apple}, { t Fruit}, { t Melon}, { t PlantFood}, { t Vegetable} \} \end{array}
ight.$$

► Usual intuition of merging \u03c6₁ and \u03c6₂: minimally modify \u03c6₁ and \u03c6₂ into \u03c6₁ and \u03c6₂ so that their conjunction is consistent

$$\Delta(\{\psi_1,\psi_2\})=\psi_1'\wedge\psi_2'$$

► Usual intuition of merging \u03c6₁ and \u03c6₂: minimally modify \u03c6₁ and \u03c6₂ into \u03c6₁ and \u03c6₂ so that their conjunction is consistent

$$\Delta(\{\psi_1,\psi_2\})=\psi_1'\wedge\psi_2'$$

 Usual notion of conjunction of two knowledge bases: union of their axioms

► Usual intuition of merging \u03c6₁ and \u03c6₂: minimally modify \u03c6₁ and \u03c6₂ into \u03c6₁ and \u03c6₂ so that their conjunction is consistent

$$\Delta(\{\psi_1,\psi_2\})=\psi_1'\wedge\psi_2'$$

- Usual notion of conjunction of two knowledge bases: union of their axioms
- Problem: the union of two taxonomies is always consistent

► Usual intuition of merging \u03c6₁ and \u03c6₂: minimally modify \u03c6₁ and \u03c6₂ into \u03c6₁ and \u03c6₂ so that their conjunction is consistent

$$\Delta(\{\psi_1,\psi_2\})=\psi_1'\wedge\psi_2'$$

- Usual notion of conjunction of two knowledge bases: union of their axioms
- Problem: the union of two taxonomies is always consistent

► Usual intuition of merging \u03c6₁ and \u03c6₂: minimally modify \u03c6₁ and \u03c6₂ into \u03c6₁ and \u03c6₂ so that their conjunction is consistent

$$\Delta(\{\psi_1,\psi_2\})=\psi_1'\wedge\psi_2'$$

- Usual notion of conjunction of two knowledge bases: union of their axioms
- Problem: the union of two taxonomies is always consistent

• Another definition of \wedge is proposed for taxonomies.

• A taxonomy ψ of $\mathcal{L}_{\mathcal{T}}$ considered under CWA:

$$\widehat{\psi} = \{ A \sqsubseteq B \mid A, B \in \mathcal{V}(\psi), \quad \psi \models A \sqsubseteq B \} \\ \cup \{ A \not\sqsubseteq B \mid A, B \in \mathcal{V}(\psi), \quad \psi \not\models A \sqsubseteq B \}$$

$$\cup \{A \not\sqsubseteq B \mid A, B \in \mathcal{V}(\psi), \quad \psi \not\models A \sqsubseteq B\}$$
$$\cup \{A \not\sqsubseteq B \mid A, B \in \mathcal{V}(\psi), \quad \psi \not\models A \sqsubseteq B\}$$

• Conjunction of ψ_1 and ψ_2 :

$$\psi_1 \wedge \psi_2 \stackrel{\text{def}}{=} \widehat{\psi_1} \cup \widehat{\psi_2}$$

• A taxonomy ψ of $\mathcal{L}_{\mathcal{T}}$ considered under CWA:

$$\widehat{\psi} = \{ A \sqsubseteq B \mid A, B \in \mathcal{V}(\psi), \quad \psi \models A \sqsubseteq B \} \\ \cup \{ A \not\sqsubseteq B \mid A, B \in \mathcal{V}(\psi), \quad \psi \not\models A \sqsubseteq B \}$$

• Conjunction of ψ_1 and ψ_2 :

$$\psi_1 \wedge \psi_2 \stackrel{\text{def}}{=} \widehat{\psi_1} \cup \widehat{\psi_2}$$

▶ In the example, $\psi_1 \land \psi_2$ is inconsistent, since $\psi_1 \land \psi_2 \supseteq \{ Melon \sqsubseteq Fruit, Melon \nothermoder Fruit \} \}$ Taxonomy language with negations: $\mathcal{L}_\mathcal{T}^\neg$

 $\bullet \ \widehat{\cdot} : \psi \in \mathcal{L}_{\mathcal{T}} \mapsto \widehat{\psi} \in \mathcal{L}_{\mathcal{T}}^{\neg}$

Taxonomy language with negations: $\mathcal{L}_\mathcal{T}^\neg$

Taxonomy language with negations: $\mathcal{L}_\mathcal{T}^\neg$

Expected result of merging, on the example

Definition of a merging operator (1/2)

Input: a set {ψ₁,...,ψ_n} of taxonomies (in practice, for the Kolflow project: n = 2) Definition of a merging operator (1/2)

- Input: a set {ψ₁,...,ψ_n} of taxonomies (in practice, for the Kolflow project: n = 2)
- Output: $\Delta(\{\psi_1,\ldots,\psi_n\})$: a taxonomy

Definition of a merging operator (2/2)

1.
$$\psi_i := \widehat{\psi_i}$$
 for each *i*

1.
$$\psi_i := \widehat{\psi_i}$$
 for each *i*
2. $\alpha := \bigcap_i \psi_i$

// agreement

1.
$$\psi_i := \widehat{\psi_i}$$
 for each i
2. $\alpha := \bigcap_i \psi_i$
3. $\delta_i := \psi_i \setminus \alpha$ for each i

// agreement

1.
$$\psi_i := \widehat{\psi_i}$$
 for each i
2. $\alpha := \bigcap_i \psi_i$
3. $\delta_i := \psi_i \setminus \alpha$ for each i
4. $\delta := \bigcup_i \delta_i$

// agreement

// disagreement

1.
$$\psi_i := \widehat{\psi_i}$$
 for each i
2. $\alpha := \bigcap_i \psi_i$ // agreement
3. $\delta_i := \psi_i \setminus \alpha$ for each i
4. $\delta := \bigcup_i \delta_i$ // disagreement
5. Candidates := $\begin{cases} \Gamma & \alpha \subseteq \Gamma \subseteq \alpha \cup \delta \\ \Gamma \text{ is consistent} \\ \Gamma \text{ is maximal for } \end{bmatrix}$

1.
$$\psi_i := \widehat{\psi_i}$$
 for each i
2. $\alpha := \bigcap_i \psi_i$ // agreement
3. $\delta_i := \psi_i \setminus \alpha$ for each i
4. $\delta := \bigcup_i \delta_i$ // disagreement
5. Candidates := $\left\{ \Gamma \mid \begin{array}{c} \alpha \subseteq \Gamma \subseteq \alpha \cup \delta \\ \Gamma \text{ is consistent} \\ \Gamma \text{ is maximal for } \subseteq \end{array} \right\}$
6. $\Gamma := \text{choice in Candidates}$ // magic step!

1. $\psi_i := \widehat{\psi_i}$ for each *i* 2. $\alpha := \bigcap_{i} \psi_{i}$ // agreement 3. $\delta_i := \psi_i \setminus \alpha$ for each *i* 4. $\delta := \bigcup_i \delta_i$ // disagreement 5. Candidates := $\left\{ \Gamma \mid \begin{array}{c} \alpha \subseteq \Gamma \subseteq \alpha \cup \delta \\ \Gamma \text{ is consistent} \\ \Gamma \text{ is maximal for } \subseteq \end{array} \right\}$ 6. Γ := choice in Candidates // magic step! 7. return deductive reduction of Γ

► (A1-6): postulates of [Konieczny and Pino Pérez, 2002]

- ▶ (A1-6): postulates of [Konieczny and Pino Pérez, 2002]
- (A-1), (A-2) and (A-3) are satisfied by Δ
 - (A-1) $\Delta(E)$ is consistent.
 - (A-2) If $\bigwedge E$ is consistent then $\Delta(E) = \bigwedge E$.
 - (A-3) Irrelevance of syntax.

- ▶ (A1-6): postulates of [Konieczny and Pino Pérez, 2002]
- (A-1), (A-2) and (A-3) are satisfied by Δ
 - (A-1) $\Delta(E)$ is consistent.
 - (A-2) If $\bigwedge E$ is consistent then $\Delta(E) = \bigwedge E$.
 - (A-3) Irrelevance of syntax.
- (A-4), the fairness property, is *not* satisfied by Δ
 - (A-4) If $\psi_1 \wedge \psi_2$ is not consistent then $\Delta(\{\psi_1, \psi_2\}) \not\models \psi_1$.

- ▶ (A1-6): postulates of [Konieczny and Pino Pérez, 2002]
- (A-1), (A-2) and (A-3) are satisfied by Δ
 - (A-1) $\Delta(E)$ is consistent.
 - (A-2) If $\bigwedge E$ is consistent then $\Delta(E) = \bigwedge E$.
 - (A-3) Irrelevance of syntax.
- (A-4), the fairness property, is *not* satisfied by Δ

(A-4) If $\psi_1 \wedge \psi_2$ is not consistent then $\Delta(\{\psi_1, \psi_2\}) \not\models \psi_1$.

Interpretation: This is due to the lack of disjunction in $\mathcal{L}_\mathcal{T}$ that involves the necessity to make (unfair) choices.

Remark: $\nabla : \{\psi_1, \ldots, \psi_n\} \mapsto \bigvee \text{Candidates satisfies (A-4)}.$

- ► (A1-6): postulates of [Konieczny and Pino Pérez, 2002]
- (A-1), (A-2) and (A-3) are satisfied by Δ
 - (A-1) $\Delta(E)$ is consistent.
 - (A-2) If $\bigwedge E$ is consistent then $\Delta(E) = \bigwedge E$.
 - (A-3) Irrelevance of syntax.
- (A-4), the fairness property, is *not* satisfied by Δ
 - (A-4) If $\psi_1 \wedge \psi_2$ is not consistent then $\Delta(\{\psi_1, \psi_2\}) \not\models \psi_1$.
 - Interpretation: This is due to the lack of disjunction in $\mathcal{L}_\mathcal{T}$ that involves the necessity to make (unfair) choices.
 - **Remark:** $\nabla : \{\psi_1, \dots, \psi_n\} \mapsto \bigvee \text{Candidates satisfies (A-4)}.$
- ► (A-5) and (A-6) only proven for binary merging (n = 2): sorry! (A-5) $\Delta(E_1) \wedge \Delta(E_2) \models \Delta(E_1 \cup E_2)$ (A-6) If $\Delta(E_1) \wedge \Delta(E_2)$ is consistent then $\Delta(E_1 \cup E_2) \models \Delta(E_1) \wedge \Delta(E_2)$.

- ► (A1-6): postulates of [Konieczny and Pino Pérez, 2002]
- (A-1), (A-2) and (A-3) are satisfied by Δ
 - (A-1) $\Delta(E)$ is consistent.
 - (A-2) If $\bigwedge E$ is consistent then $\Delta(E) = \bigwedge E$.
 - (A-3) Irrelevance of syntax.
- (A-4), the fairness property, is *not* satisfied by Δ
 - (A-4) If $\psi_1 \wedge \psi_2$ is not consistent then $\Delta(\{\psi_1, \psi_2\}) \not\models \psi_1$.
 - **Interpretation:** This is due to the lack of disjunction in $\mathcal{L}_{\mathcal{T}}$ that involves the necessity to make (unfair) choices.

Remark: $\nabla : \{\psi_1, \dots, \psi_n\} \mapsto \bigvee \text{Candidates satisfies (A-4)}.$

- (A-5) and (A-6) only proven for binary merging (n = 2): sorry!
 (A-5) Δ(E1) ∧ Δ(E₂) ⊨ Δ(E₁ ∪ E₂)
 (A-6) If Δ(E1) ∧ Δ(E₂) is consistent then Δ(E₁ ∪ E₂) ⊨ Δ(E1) ∧ Δ(E₂).
- ► Complexity (of a straightforward algorithm): polynomial in |α| + exponential in |δ|

Conclusion and future work

▶ More studies about the properties of the operator

- More studies about the properties of the operator
- Integrating the user in the choice process (and reusing previous choices of users)

- More studies about the properties of the operator
- Integrating the user in the choice process (and reusing previous choices of users)
- Implementation, test, optimisation