
Towards an operator for merging taxonomies

Amélie Cordier,1 Jean Lieber,234 Julien Stevenot234

1 Université de Lyon 1, CNRS, LIRIS, UMR5205,
amelie.cordier@liris.cnrs.fr

2 Université de Lorraine, LORIA, UMR 7503 � Vand÷uvre-lès-Nancy,
F-54506, France, jean.lieber@loria.fr, julien.stevenot@loria.fr

3 CNRS, LORIA, UMR 7503 � Vand÷uvre-lès-Nancy, F-54506, France
4 Inria � Villers-lès-Nancy, F-54602, France

Taaable (http://taaable.fr)
WikiTaaable (http://wikitaaable.loria.fr)

Kol�ow project (http://kolflow.univ-nantes.fr)

1 / 17

http://taaable.fr
http://wikitaaable.loria.fr
http://kolflow.univ-nantes.fr

Outline of the talk

I Context and motivation

I Merging taxonomies

I Conclusion and future work

2 / 17

Context and motivation

3 / 17

Taaable and WikiTaaable
http://taaable.fr

http://wikitaaable.loria.fr

I Taaable: a CBR system that reuses a cooking recipe base

I WikiTaaable: a semantic wiki for the Taaable knowledge base
including a taxonomical domain ontology

4 / 17

http://taaable.fr
http://wikitaaable.loria.fr

DSMW

I MW = MediaWiki, a wiki engine

I SMW = Semantic MW, a semantic wiki engine

I DSMW = Distributed SMW
I Several WikiTaaables

5 / 17

Kol�ow http://kolflow.univ-nantes.fr

I Man-machine collaboration in continuous knowledge
construction �ows

I Merging the contents of two semantic wikis

I The textual parts
I The knowledge parts

I Often, the two semantic wikis come from another one,
so they are quite similar

6 / 17

http://kolflow.univ-nantes.fr

Kol�ow http://kolflow.univ-nantes.fr

I Man-machine collaboration in continuous knowledge
construction �ows

I Merging the contents of two semantic wikis

I The textual parts
I The knowledge parts

I Often, the two semantic wikis come from another one,
so they are quite similar

6 / 17

http://kolflow.univ-nantes.fr

Kol�ow http://kolflow.univ-nantes.fr

I Man-machine collaboration in continuous knowledge
construction �ows

I Merging the contents of two semantic wikis
I The textual parts

I The knowledge parts

I Often, the two semantic wikis come from another one,
so they are quite similar

6 / 17

http://kolflow.univ-nantes.fr

Kol�ow http://kolflow.univ-nantes.fr

I Man-machine collaboration in continuous knowledge
construction �ows

I Merging the contents of two semantic wikis
I The textual parts
I The knowledge parts

I Often, the two semantic wikis come from another one,
so they are quite similar

6 / 17

http://kolflow.univ-nantes.fr

Kol�ow http://kolflow.univ-nantes.fr

I Man-machine collaboration in continuous knowledge
construction �ows

I Merging the contents of two semantic wikis
I The textual parts
I The knowledge parts

I Often, the two semantic wikis come from another one,
so they are quite similar

6 / 17

http://kolflow.univ-nantes.fr

Knowledge representation in a semantic wiki:
mainly class-superclass relations

Melon v Fruit

∀x Melon(x)⇒ Fruit(x)

7 / 17

Knowledge representation in a semantic wiki:
mainly class-superclass relations

Melon v Fruit

∀x Melon(x)⇒ Fruit(x)

7 / 17

Knowledge representation in a semantic wiki:
mainly class-superclass relations

Melon v Fruit

∀x Melon(x)⇒ Fruit(x)

7 / 17

Merging taxonomies

8 / 17

Taxonomy language

I LT : language of taxonomies
A formula of LT : A v B

Deductive inferences based on the transitivity of v

I A taxonomy ψ: a �nite set of formulas of LT
I Example:

ψ =

®
Apple v Fruit, Melon v Fruit,
Fruit v PlantFood, Vegetable v PlantFood

´
V(ψ) = {Apple, Fruit, Melon, PlantFood, Vegetable}

PlantFood

Fruit Vegetable

Apple Melon

9 / 17

Taxonomy language

I LT : language of taxonomies
A formula of LT : A v B

Deductive inferences based on the transitivity of v
I A taxonomy ψ: a �nite set of formulas of LT

I Example:

ψ =

®
Apple v Fruit, Melon v Fruit,
Fruit v PlantFood, Vegetable v PlantFood

´
V(ψ) = {Apple, Fruit, Melon, PlantFood, Vegetable}

PlantFood

Fruit Vegetable

Apple Melon

9 / 17

Taxonomy language

I LT : language of taxonomies
A formula of LT : A v B

Deductive inferences based on the transitivity of v
I A taxonomy ψ: a �nite set of formulas of LT
I Example:

ψ =

®
Apple v Fruit, Melon v Fruit,
Fruit v PlantFood, Vegetable v PlantFood

´
V(ψ) = {Apple, Fruit, Melon, PlantFood, Vegetable}

PlantFood

Fruit Vegetable

Apple Melon

9 / 17

Merging two taxonomies, what does it mean?
I Usual intuition of merging ψ1 and ψ2:

minimally modify ψ1 and ψ2 into ψ′
1
and ψ′

2
so that their

conjunction is consistent

∆({ψ1, ψ2}) = ψ′
1 ∧ ψ′

2

I Usual notion of conjunction of two knowledge bases:
union of their axioms

I Problem: the union of two taxonomies is always consistent

PlantFood

Fruit Vegetable

Apple Melon

∪

PlantFood

Fruit Vegetable

Apple Melon

=

PlantFood

Fruit Vegetable

Apple Melon

I Another de�nition of ∧ is proposed for taxonomies.

10 / 17

Merging two taxonomies, what does it mean?
I Usual intuition of merging ψ1 and ψ2:

minimally modify ψ1 and ψ2 into ψ′
1
and ψ′

2
so that their

conjunction is consistent

∆({ψ1, ψ2}) = ψ′
1 ∧ ψ′

2

I Usual notion of conjunction of two knowledge bases:
union of their axioms

I Problem: the union of two taxonomies is always consistent

PlantFood

Fruit Vegetable

Apple Melon

∪

PlantFood

Fruit Vegetable

Apple Melon

=

PlantFood

Fruit Vegetable

Apple Melon

I Another de�nition of ∧ is proposed for taxonomies.

10 / 17

Merging two taxonomies, what does it mean?
I Usual intuition of merging ψ1 and ψ2:

minimally modify ψ1 and ψ2 into ψ′
1
and ψ′

2
so that their

conjunction is consistent

∆({ψ1, ψ2}) = ψ′
1 ∧ ψ′

2

I Usual notion of conjunction of two knowledge bases:
union of their axioms

I Problem: the union of two taxonomies is always consistent

PlantFood

Fruit Vegetable

Apple Melon

∪

PlantFood

Fruit Vegetable

Apple Melon

=

PlantFood

Fruit Vegetable

Apple Melon

I Another de�nition of ∧ is proposed for taxonomies.

10 / 17

Merging two taxonomies, what does it mean?
I Usual intuition of merging ψ1 and ψ2:

minimally modify ψ1 and ψ2 into ψ′
1
and ψ′

2
so that their

conjunction is consistent

∆({ψ1, ψ2}) = ψ′
1 ∧ ψ′

2

I Usual notion of conjunction of two knowledge bases:
union of their axioms

I Problem: the union of two taxonomies is always consistent

PlantFood

Fruit Vegetable

Apple Melon

∪

PlantFood

Fruit Vegetable

Apple Melon

=

PlantFood

Fruit Vegetable

Apple Melon

I Another de�nition of ∧ is proposed for taxonomies.

10 / 17

Merging two taxonomies, what does it mean?
I Usual intuition of merging ψ1 and ψ2:

minimally modify ψ1 and ψ2 into ψ′
1
and ψ′

2
so that their

conjunction is consistent

∆({ψ1, ψ2}) = ψ′
1 ∧ ψ′

2

I Usual notion of conjunction of two knowledge bases:
union of their axioms

I Problem: the union of two taxonomies is always consistent

PlantFood

Fruit Vegetable

Apple Melon

∪

PlantFood

Fruit Vegetable

Apple Melon

=

PlantFood

Fruit Vegetable

Apple Melon

I Another de�nition of ∧ is proposed for taxonomies.

10 / 17

Merging two taxonomies, what does it mean?

ψ1 =

PlantFood

Fruit Vegetable

Apple Melon

ψ2 =

PlantFood

Fruit Vegetable

Apple Melon

I A taxonomy ψ of LT considered under CWA:

ψ̂ = {A v B | A,B ∈ V(ψ), ψ |= A v B}
∪ {A 6v B | A,B ∈ V(ψ), ψ 6|= A v B}

I Conjunction of ψ1 and ψ2:

ψ1 ∧ ψ2

def
= ψ̂1 ∪ ψ̂2

I In the example, ψ1 ∧ ψ2 is inconsistent, since
ψ1 ∧ ψ2 ⊇ {Melon v Fruit, Melon 6v Fruit}

10 / 17

Merging two taxonomies, what does it mean?

ψ1 =

PlantFood

Fruit Vegetable

Apple Melon

ψ2 =

PlantFood

Fruit Vegetable

Apple Melon

I ψ2 6|= Melon v Fruit interpretation?

1. ψ2 6|= Melon v Fruit (incompleteness)
2. ψ2 |= Melon 6v Fruit (closed-world assumption, CWA)

ψ 6|= A v B

A 6v B CWA

I A taxonomy ψ of LT considered under CWA:

ψ̂ = {A v B | A,B ∈ V(ψ), ψ |= A v B}
∪ {A 6v B | A,B ∈ V(ψ), ψ 6|= A v B}

I Conjunction of ψ1 and ψ2:

ψ1 ∧ ψ2

def
= ψ̂1 ∪ ψ̂2

I In the example, ψ1 ∧ ψ2 is inconsistent, since
ψ1 ∧ ψ2 ⊇ {Melon v Fruit, Melon 6v Fruit}

10 / 17

Merging two taxonomies, what does it mean?

ψ1 =

PlantFood

Fruit Vegetable

Apple Melon

ψ2 =

PlantFood

Fruit Vegetable

Apple Melon

I ψ2 6|= Melon v Fruit interpretation?
1. ψ2 6|= Melon v Fruit (incompleteness)

2. ψ2 |= Melon 6v Fruit (closed-world assumption, CWA)

ψ 6|= A v B

A 6v B CWA

I A taxonomy ψ of LT considered under CWA:

ψ̂ = {A v B | A,B ∈ V(ψ), ψ |= A v B}
∪ {A 6v B | A,B ∈ V(ψ), ψ 6|= A v B}

I Conjunction of ψ1 and ψ2:

ψ1 ∧ ψ2

def
= ψ̂1 ∪ ψ̂2

I In the example, ψ1 ∧ ψ2 is inconsistent, since
ψ1 ∧ ψ2 ⊇ {Melon v Fruit, Melon 6v Fruit}

10 / 17

Merging two taxonomies, what does it mean?

ψ1 =

PlantFood

Fruit Vegetable

Apple Melon

ψ2 =

PlantFood

Fruit Vegetable

Apple Melon

I ψ2 6|= Melon v Fruit interpretation?
1. ψ2 6|= Melon v Fruit (incompleteness)
2. ψ2 |= Melon 6v Fruit (closed-world assumption, CWA)

ψ 6|= A v B

A 6v B CWA

I A taxonomy ψ of LT considered under CWA:

ψ̂ = {A v B | A,B ∈ V(ψ), ψ |= A v B}
∪ {A 6v B | A,B ∈ V(ψ), ψ 6|= A v B}

I Conjunction of ψ1 and ψ2:

ψ1 ∧ ψ2

def
= ψ̂1 ∪ ψ̂2

I In the example, ψ1 ∧ ψ2 is inconsistent, since
ψ1 ∧ ψ2 ⊇ {Melon v Fruit, Melon 6v Fruit}

10 / 17

Merging two taxonomies, what does it mean?

ψ1 =

PlantFood

Fruit Vegetable

Apple Melon

ψ2 =

PlantFood

Fruit Vegetable

Apple Melon

I ψ2 6|= Melon v Fruit interpretation?
1. ψ2 6|= Melon v Fruit (incompleteness)
2. ψ2 |= Melon 6v Fruit (closed-world assumption, CWA)

ψ 6|= A v B

A 6v B CWA

I A taxonomy ψ of LT considered under CWA:

ψ̂ = {A v B | A,B ∈ V(ψ), ψ |= A v B}
∪ {A 6v B | A,B ∈ V(ψ), ψ 6|= A v B}

I Conjunction of ψ1 and ψ2:

ψ1 ∧ ψ2

def
= ψ̂1 ∪ ψ̂2

I In the example, ψ1 ∧ ψ2 is inconsistent, since
ψ1 ∧ ψ2 ⊇ {Melon v Fruit, Melon 6v Fruit}

10 / 17

Merging two taxonomies, what does it mean?

ψ1 =

PlantFood

Fruit Vegetable

Apple Melon

ψ2 =

PlantFood

Fruit Vegetable

Apple Melon

I A taxonomy ψ of LT considered under CWA:

ψ̂ = {A v B | A,B ∈ V(ψ), ψ |= A v B}
∪ {A 6v B | A,B ∈ V(ψ), ψ 6|= A v B}

I Conjunction of ψ1 and ψ2:

ψ1 ∧ ψ2

def
= ψ̂1 ∪ ψ̂2

I In the example, ψ1 ∧ ψ2 is inconsistent, since
ψ1 ∧ ψ2 ⊇ {Melon v Fruit, Melon 6v Fruit}

10 / 17

Merging two taxonomies, what does it mean?

ψ1 =

PlantFood

Fruit Vegetable

Apple Melon

ψ2 =

PlantFood

Fruit Vegetable

Apple Melon

I A taxonomy ψ of LT considered under CWA:

ψ̂ = {A v B | A,B ∈ V(ψ), ψ |= A v B}
∪ {A 6v B | A,B ∈ V(ψ), ψ 6|= A v B}

I Conjunction of ψ1 and ψ2:

ψ1 ∧ ψ2

def
= ψ̂1 ∪ ψ̂2

I In the example, ψ1 ∧ ψ2 is inconsistent, since
ψ1 ∧ ψ2 ⊇ {Melon v Fruit, Melon 6v Fruit}

10 / 17

Taxonomy language with negations: L¬T

I ·̂ : ψ ∈ LT 7→ ψ̂ ∈ L¬T

I L¬T 's formulas: A v B and A 6v B

A v B means ∀x A(x)⇒ B(x)
A 6v B means ∃x A(x) ∧ ¬B(x)

I Remark: L¬T is not propositionnaly closed

11 / 17

Taxonomy language with negations: L¬T

I ·̂ : ψ ∈ LT 7→ ψ̂ ∈ L¬T
I L¬T 's formulas: A v B and A 6v B

A v B means ∀x A(x)⇒ B(x)
A 6v B means ∃x A(x) ∧ ¬B(x)

I Remark: L¬T is not propositionnaly closed

11 / 17

Taxonomy language with negations: L¬T

I ·̂ : ψ ∈ LT 7→ ψ̂ ∈ L¬T
I L¬T 's formulas: A v B and A 6v B

A v B means ∀x A(x)⇒ B(x)
A 6v B means ∃x A(x) ∧ ¬B(x)

I Remark: L¬T is not propositionnaly closed

11 / 17

Expected result of merging, on the example

∆

PlantFood

Fruit Vegetable

Apple Melon

,

PlantFood

Fruit Vegetable

Apple Melon

∈

PlantFood

Fruit Vegetable

Apple Melon

,

PlantFood

Fruit Vegetable

Apple Melon

,

PlantFood

Fruit Vegetable

Apple Melon

,

PlantFood

Fruit Vegetable

Apple Melon

12 / 17

De�nition of a merging operator (1/2)

I Input: a set {ψ1, . . . , ψn} of taxonomies
(in practice, for the Kol�ow project: n = 2)

I Output: ∆({ψ1, . . . , ψn}): a taxonomy

13 / 17

De�nition of a merging operator (1/2)

I Input: a set {ψ1, . . . , ψn} of taxonomies
(in practice, for the Kol�ow project: n = 2)

I Output: ∆({ψ1, . . . , ψn}): a taxonomy

13 / 17

De�nition of a merging operator (2/2)

1. ψi :=
”ψi for each i

2. α :=
⋂
i

ψi // agreement

3. δi := ψi \ α for each i

4. δ :=
⋃
i

δi // disagreement

5. Candidates :=

Γ

∣∣∣∣∣∣∣
α ⊆ Γ ⊆ α ∪ δ
Γ is consistent
Γ is maximal for ⊆

6. Γ := choice in Candidates // magic step!

7. return deductive reduction of Γ

14 / 17

De�nition of a merging operator (2/2)

1. ψi :=
”ψi for each i

2. α :=
⋂
i

ψi // agreement

3. δi := ψi \ α for each i

4. δ :=
⋃
i

δi // disagreement

5. Candidates :=

Γ

∣∣∣∣∣∣∣
α ⊆ Γ ⊆ α ∪ δ
Γ is consistent
Γ is maximal for ⊆

6. Γ := choice in Candidates // magic step!

7. return deductive reduction of Γ

14 / 17

De�nition of a merging operator (2/2)

1. ψi :=
”ψi for each i

2. α :=
⋂
i

ψi // agreement

3. δi := ψi \ α for each i

4. δ :=
⋃
i

δi // disagreement

5. Candidates :=

Γ

∣∣∣∣∣∣∣
α ⊆ Γ ⊆ α ∪ δ
Γ is consistent
Γ is maximal for ⊆

6. Γ := choice in Candidates // magic step!

7. return deductive reduction of Γ

14 / 17

De�nition of a merging operator (2/2)

1. ψi :=
”ψi for each i

2. α :=
⋂
i

ψi // agreement

3. δi := ψi \ α for each i

4. δ :=
⋃
i

δi // disagreement

5. Candidates :=

Γ

∣∣∣∣∣∣∣
α ⊆ Γ ⊆ α ∪ δ
Γ is consistent
Γ is maximal for ⊆

6. Γ := choice in Candidates // magic step!

7. return deductive reduction of Γ

14 / 17

De�nition of a merging operator (2/2)

1. ψi :=
”ψi for each i

2. α :=
⋂
i

ψi // agreement

3. δi := ψi \ α for each i

4. δ :=
⋃
i

δi // disagreement

5. Candidates :=

Γ

∣∣∣∣∣∣∣
α ⊆ Γ ⊆ α ∪ δ
Γ is consistent
Γ is maximal for ⊆

6. Γ := choice in Candidates // magic step!

7. return deductive reduction of Γ

14 / 17

De�nition of a merging operator (2/2)

1. ψi :=
”ψi for each i

2. α :=
⋂
i

ψi // agreement

3. δi := ψi \ α for each i

4. δ :=
⋃
i

δi // disagreement

5. Candidates :=

Γ

∣∣∣∣∣∣∣
α ⊆ Γ ⊆ α ∪ δ
Γ is consistent
Γ is maximal for ⊆

6. Γ := choice in Candidates // magic step!

7. return deductive reduction of Γ

14 / 17

De�nition of a merging operator (2/2)

1. ψi :=
”ψi for each i

2. α :=
⋂
i

ψi // agreement

3. δi := ψi \ α for each i

4. δ :=
⋃
i

δi // disagreement

5. Candidates :=

Γ

∣∣∣∣∣∣∣
α ⊆ Γ ⊆ α ∪ δ
Γ is consistent
Γ is maximal for ⊆

6. Γ := choice in Candidates // magic step!

7. return deductive reduction of Γ

14 / 17

Properties of ∆

I (A1-6): postulates of [Konieczny and Pino Pérez, 2002]

I (A-1), (A-2) and (A-3) are satis�ed by ∆

(A-1) ∆(E) is consistent.
(A-2) If

∧
E is consistent then ∆(E) =

∧
E .

(A-3) Irrelevance of syntax.

I (A-4), the fairness property, is not satis�ed by ∆

(A-4) If ψ1 ∧ ψ2 is not consistent then ∆({ψ1, ψ2}) 6|= ψ1.

Interpretation: This is due to the lack of disjunction in LT
that involves the necessity to make (unfair) choices.
Remark: ∇ : {ψ1, . . . , ψn} 7→

∨
Candidates satis�es (A-4).

I (A-5) and (A-6) only proven for binary merging (n = 2): sorry!

(A-5) ∆(E1) ∧∆(E2) |= ∆(E1 ∪ E2)
(A-6) If ∆(E1) ∧∆(E2) is consistent then

∆(E1 ∪ E2) |= ∆(E1) ∧∆(E2).

I Complexity (of a straightforward algorithm):
polynomial in |α|+ exponential in |δ|

15 / 17

Properties of ∆

I (A1-6): postulates of [Konieczny and Pino Pérez, 2002]

I (A-1), (A-2) and (A-3) are satis�ed by ∆

(A-1) ∆(E) is consistent.
(A-2) If

∧
E is consistent then ∆(E) =

∧
E .

(A-3) Irrelevance of syntax.

I (A-4), the fairness property, is not satis�ed by ∆

(A-4) If ψ1 ∧ ψ2 is not consistent then ∆({ψ1, ψ2}) 6|= ψ1.

Interpretation: This is due to the lack of disjunction in LT
that involves the necessity to make (unfair) choices.
Remark: ∇ : {ψ1, . . . , ψn} 7→

∨
Candidates satis�es (A-4).

I (A-5) and (A-6) only proven for binary merging (n = 2): sorry!

(A-5) ∆(E1) ∧∆(E2) |= ∆(E1 ∪ E2)
(A-6) If ∆(E1) ∧∆(E2) is consistent then

∆(E1 ∪ E2) |= ∆(E1) ∧∆(E2).

I Complexity (of a straightforward algorithm):
polynomial in |α|+ exponential in |δ|

15 / 17

Properties of ∆

I (A1-6): postulates of [Konieczny and Pino Pérez, 2002]

I (A-1), (A-2) and (A-3) are satis�ed by ∆

(A-1) ∆(E) is consistent.
(A-2) If

∧
E is consistent then ∆(E) =

∧
E .

(A-3) Irrelevance of syntax.

I (A-4), the fairness property, is not satis�ed by ∆

(A-4) If ψ1 ∧ ψ2 is not consistent then ∆({ψ1, ψ2}) 6|= ψ1.

Interpretation: This is due to the lack of disjunction in LT
that involves the necessity to make (unfair) choices.
Remark: ∇ : {ψ1, . . . , ψn} 7→

∨
Candidates satis�es (A-4).

I (A-5) and (A-6) only proven for binary merging (n = 2): sorry!

(A-5) ∆(E1) ∧∆(E2) |= ∆(E1 ∪ E2)
(A-6) If ∆(E1) ∧∆(E2) is consistent then

∆(E1 ∪ E2) |= ∆(E1) ∧∆(E2).

I Complexity (of a straightforward algorithm):
polynomial in |α|+ exponential in |δ|

15 / 17

Properties of ∆

I (A1-6): postulates of [Konieczny and Pino Pérez, 2002]

I (A-1), (A-2) and (A-3) are satis�ed by ∆

(A-1) ∆(E) is consistent.
(A-2) If

∧
E is consistent then ∆(E) =

∧
E .

(A-3) Irrelevance of syntax.

I (A-4), the fairness property, is not satis�ed by ∆

(A-4) If ψ1 ∧ ψ2 is not consistent then ∆({ψ1, ψ2}) 6|= ψ1.

Interpretation: This is due to the lack of disjunction in LT
that involves the necessity to make (unfair) choices.
Remark: ∇ : {ψ1, . . . , ψn} 7→

∨
Candidates satis�es (A-4).

I (A-5) and (A-6) only proven for binary merging (n = 2): sorry!

(A-5) ∆(E1) ∧∆(E2) |= ∆(E1 ∪ E2)
(A-6) If ∆(E1) ∧∆(E2) is consistent then

∆(E1 ∪ E2) |= ∆(E1) ∧∆(E2).

I Complexity (of a straightforward algorithm):
polynomial in |α|+ exponential in |δ|

15 / 17

Properties of ∆

I (A1-6): postulates of [Konieczny and Pino Pérez, 2002]

I (A-1), (A-2) and (A-3) are satis�ed by ∆

(A-1) ∆(E) is consistent.
(A-2) If

∧
E is consistent then ∆(E) =

∧
E .

(A-3) Irrelevance of syntax.

I (A-4), the fairness property, is not satis�ed by ∆

(A-4) If ψ1 ∧ ψ2 is not consistent then ∆({ψ1, ψ2}) 6|= ψ1.

Interpretation: This is due to the lack of disjunction in LT
that involves the necessity to make (unfair) choices.
Remark: ∇ : {ψ1, . . . , ψn} 7→

∨
Candidates satis�es (A-4).

I (A-5) and (A-6) only proven for binary merging (n = 2): sorry!

(A-5) ∆(E1) ∧∆(E2) |= ∆(E1 ∪ E2)
(A-6) If ∆(E1) ∧∆(E2) is consistent then

∆(E1 ∪ E2) |= ∆(E1) ∧∆(E2).

I Complexity (of a straightforward algorithm):
polynomial in |α|+ exponential in |δ|

15 / 17

Properties of ∆

I (A1-6): postulates of [Konieczny and Pino Pérez, 2002]

I (A-1), (A-2) and (A-3) are satis�ed by ∆

(A-1) ∆(E) is consistent.
(A-2) If

∧
E is consistent then ∆(E) =

∧
E .

(A-3) Irrelevance of syntax.

I (A-4), the fairness property, is not satis�ed by ∆

(A-4) If ψ1 ∧ ψ2 is not consistent then ∆({ψ1, ψ2}) 6|= ψ1.

Interpretation: This is due to the lack of disjunction in LT
that involves the necessity to make (unfair) choices.
Remark: ∇ : {ψ1, . . . , ψn} 7→

∨
Candidates satis�es (A-4).

I (A-5) and (A-6) only proven for binary merging (n = 2): sorry!

(A-5) ∆(E1) ∧∆(E2) |= ∆(E1 ∪ E2)
(A-6) If ∆(E1) ∧∆(E2) is consistent then

∆(E1 ∪ E2) |= ∆(E1) ∧∆(E2).

I Complexity (of a straightforward algorithm):
polynomial in |α|+ exponential in |δ|

15 / 17

Conclusion and future work

16 / 17

Conclusion and future work

Conclusion A work at its beginning on merging taxonomies
(or revising a taxonomy by another taxonomy)

Future work

I More studies about the properties of the operator
I Integrating the user in the choice process

(and reusing previous choices of users)
I Implementation, test, optimisation

17 / 17

Conclusion and future work

Conclusion A work at its beginning on merging taxonomies
(or revising a taxonomy by another taxonomy)

Future work

I More studies about the properties of the operator
I Integrating the user in the choice process

(and reusing previous choices of users)
I Implementation, test, optimisation

17 / 17

Conclusion and future work

Conclusion A work at its beginning on merging taxonomies
(or revising a taxonomy by another taxonomy)

Future work

I More studies about the properties of the operator

I Integrating the user in the choice process
(and reusing previous choices of users)

I Implementation, test, optimisation

17 / 17

Conclusion and future work

Conclusion A work at its beginning on merging taxonomies
(or revising a taxonomy by another taxonomy)

Future work

I More studies about the properties of the operator
I Integrating the user in the choice process

(and reusing previous choices of users)

I Implementation, test, optimisation

17 / 17

Conclusion and future work

Conclusion A work at its beginning on merging taxonomies
(or revising a taxonomy by another taxonomy)

Future work

I More studies about the properties of the operator
I Integrating the user in the choice process

(and reusing previous choices of users)
I Implementation, test, optimisation

17 / 17

