Towards an operator for merging taxonomies

Amélie Cordier, ${ }^{1}$ Jean Lieber, ${ }^{234}$ Julien Stevenot ${ }^{234}$

Université de Lyon 1, CNRS, LIRIS, UMR5205, amelie.cordier@liris.cnrs.fr Université de Lorraine, LORIA, UMR 7503 - Vandœuvre-lès-Nancy, F-54506, France, jean.lieber@loria.fr, julien.stevenot@loria.fr CNRS, LORIA, UMR 7503 - Vandœuvre-lès-Nancy, F-54506, France Inria - Villers-lès-Nancy, F-54602, France

Taaable (http://taaable.fr)
WikiTaaable (http://wikitaaable.loria.fr)
Kolflow project (http://kolflow.univ-nantes.fr)

Outline of the talk

- Context and motivation
- Merging taxonomies
- Conclusion and future work

Context and motivation

Taaable and WikiTaaable
 http://taaable.fr
 http://wikitaaable.loria.fr

- Taaable: a CBR system that reuses a cooking recipe base
- WikiTaaable: a semantic wiki for the Taaable knowledge base including a taxonomical domain ontology

DSMW

- MW = MediaWiki, a wiki engine
- SMW = Semantic MW, a semantic wiki engine
- DSMW = Distributed SMW
- Several WikiTaaables

http://kolflow.univ-nantes.fr

- Man-machine collaboration in continuous knowledge construction flows

http://kolflow.univ-nantes.fr

- Man-machine collaboration in continuous knowledge construction flows
- Merging the contents of two semantic wikis

http://kolflow.univ-nantes.fr

- Man-machine collaboration in continuous knowledge construction flows
- Merging the contents of two semantic wikis
- The textual parts

http://kolflow.univ-nantes.fr

- Man-machine collaboration in continuous knowledge construction flows
- Merging the contents of two semantic wikis
- The textual parts
- The knowledge parts

Kolflow

http://kolflow.univ-nantes.fr

- Man-machine collaboration in continuous knowledge construction flows
- Merging the contents of two semantic wikis
- The textual parts
- The knowledge parts
- Often, the two semantic wikis come from another one, so they are quite similar

Knowledge representation in a semantic wiki: mainly class-superclass relations

\square

Browse
Main page
Recipe list
Food Ontology
Dish types
Dish roles
Origins
Diets
Culinary actions

Category:Melon
From Wikitaaable3ccc

Description

Melon is a name given to various members of the plant family with sweet flavoured, fleshy fruit e.g. gourds or cucurbits. Melon can be referred as a

Knowledge representation in a semantic wiki: mainly class-superclass relations

Melon \sqsubseteq Fruit

Knowledge representation in a semantic wiki: mainly class-superclass relations

$$
\text { Melon } \sqsubseteq \text { Fruit }
$$

$$
\forall x \quad \operatorname{Melon}(x) \Rightarrow \operatorname{Fruit}(x)
$$

Merging taxonomies

Taxonomy language

- $\mathcal{L}_{\mathcal{T}}$: language of taxonomies

A formula of $\mathcal{L}_{\mathcal{T}}: A \sqsubseteq B$
Deductive inferences based on the transitivity of \sqsubseteq

Taxonomy language

- $\mathcal{L}_{\mathcal{T}}$: language of taxonomies

A formula of $\mathcal{L}_{\mathcal{T}}: A \sqsubseteq B$
Deductive inferences based on the transitivity of \sqsubseteq

- A taxonomy ψ : a finite set of formulas of $\mathcal{L}_{\mathcal{T}}$

Taxonomy language

- $\mathcal{L}_{\mathcal{T}}$: language of taxonomies

A formula of $\mathcal{L}_{\mathcal{T}}: A \sqsubseteq B$
Deductive inferences based on the transitivity of \sqsubseteq

- A taxonomy ψ : a finite set of formulas of $\mathcal{L}_{\mathcal{T}}$
- Example:

$$
\begin{aligned}
\psi & =\left\{\begin{array}{ll}
\text { Apple } \sqsubseteq \text { Fruit, } & \text { Melon } \sqsubseteq \text { Fruit }, \\
\text { Fruit } \sqsubseteq \text { PlantFood, } & \text { Vegetable } \sqsubseteq \text { PlantFood }
\end{array}\right\} \\
\mathcal{V}(\psi) & =\{\text { Apple, Fruit, Melon, PlantFood, Vegetable }\}
\end{aligned}
$$

PlantFood

Merging two taxonomies, what does it mean?

- Usual intuition of merging ψ_{1} and ψ_{2} : minimally modify ψ_{1} and ψ_{2} into ψ_{1}^{\prime} and ψ_{2}^{\prime} so that their conjunction is consistent

$$
\Delta\left(\left\{\psi_{1}, \psi_{2}\right\}\right)=\psi_{1}^{\prime} \wedge \psi_{2}^{\prime}
$$

Merging two taxonomies, what does it mean?

- Usual intuition of merging ψ_{1} and ψ_{2} : minimally modify ψ_{1} and ψ_{2} into ψ_{1}^{\prime} and ψ_{2}^{\prime} so that their conjunction is consistent

$$
\Delta\left(\left\{\psi_{1}, \psi_{2}\right\}\right)=\psi_{1}^{\prime} \wedge \psi_{2}^{\prime}
$$

- Usual notion of conjunction of two knowledge bases: union of their axioms

Merging two taxonomies, what does it mean?

- Usual intuition of merging ψ_{1} and ψ_{2} : minimally modify ψ_{1} and ψ_{2} into ψ_{1}^{\prime} and ψ_{2}^{\prime} so that their conjunction is consistent

$$
\Delta\left(\left\{\psi_{1}, \psi_{2}\right\}\right)=\psi_{1}^{\prime} \wedge \psi_{2}^{\prime}
$$

- Usual notion of conjunction of two knowledge bases: union of their axioms
- Problem: the union of two taxonomies is always consistent

Merging two taxonomies, what does it mean?

- Usual intuition of merging ψ_{1} and ψ_{2} : minimally modify ψ_{1} and ψ_{2} into ψ_{1}^{\prime} and ψ_{2}^{\prime} so that their conjunction is consistent

$$
\Delta\left(\left\{\psi_{1}, \psi_{2}\right\}\right)=\psi_{1}^{\prime} \wedge \psi_{2}^{\prime}
$$

- Usual notion of conjunction of two knowledge bases: union of their axioms
- Problem: the union of two taxonomies is always consistent

Merging two taxonomies, what does it mean?

- Usual intuition of merging ψ_{1} and ψ_{2} : minimally modify ψ_{1} and ψ_{2} into ψ_{1}^{\prime} and ψ_{2}^{\prime} so that their conjunction is consistent

$$
\Delta\left(\left\{\psi_{1}, \psi_{2}\right\}\right)=\psi_{1}^{\prime} \wedge \psi_{2}^{\prime}
$$

- Usual notion of conjunction of two knowledge bases: union of their axioms
- Problem: the union of two taxonomies is always consistent

- Another definition of \wedge is proposed for taxonomies.

Merging two taxonomies, what does it mean?

Merging two taxonomies, what does it mean?

- $\psi_{2} \not \vDash$ Melon \sqsubseteq Fruit

interpretation?

Merging two taxonomies, what does it mean?

- $\psi_{2} \not \vDash$ Melon \sqsubseteq Fruit 1. $\psi_{2} \not \vDash$ Melon \sqsubseteq Fruit

interpretation? (incompleteness)

Merging two taxonomies, what does it mean?

Merging two taxonomies, what does it mean?

- $\psi_{2} \not \vDash$ Melon \sqsubseteq Fruit

1. $\psi_{2} \not \vDash$ Melon \sqsubseteq Fruit
2. $\psi_{2} \models$ Melon $\not \subset$ Fruit
interpretation?
(incompleteness)
(closed-world assumption, CWA)

$$
\frac{\psi \not \models A \sqsubseteq B}{A \nsubseteq B} \mathrm{cwA}
$$

- A taxonomy ψ of $\mathcal{L}_{\mathcal{T}}$ considered under CWA:

$$
\begin{aligned}
\widehat{\psi} & =\{A \sqsubseteq B \mid A, B \in \mathcal{V}(\psi), & & \psi \models A \sqsubseteq B\} \\
& \cup\{A \nsubseteq B \mid A, B \in \mathcal{V}(\psi), & & \psi \not \equiv A \sqsubseteq B\}
\end{aligned}
$$

Merging two taxonomies, what does it mean?

- A taxonomy ψ of $\mathcal{L}_{\mathcal{T}}$ considered under CWA:

$$
\begin{aligned}
\widehat{\psi} & =\{A \sqsubseteq B \mid A, B \in \mathcal{V}(\psi), & & \psi \models A \sqsubseteq B\} \\
& \cup\{A \nsubseteq B \mid A, B \in \mathcal{V}(\psi), & & \psi \not \models A \sqsubseteq B\}
\end{aligned}
$$

- Conjunction of ψ_{1} and ψ_{2} :

$$
\psi_{1} \wedge \psi_{2} \stackrel{\text { def }}{=} \widehat{\psi_{1}} \cup \widehat{\psi_{2}}
$$

Merging two taxonomies, what does it mean?

- A taxonomy ψ of $\mathcal{L}_{\mathcal{T}}$ considered under CWA:

$$
\begin{aligned}
\widehat{\psi} & =\{A \sqsubseteq B \mid A, B \in \mathcal{V}(\psi), & & \psi \models A \sqsubseteq B\} \\
& \cup\{A \nsubseteq B \mid A, B \in \mathcal{V}(\psi), & & \psi \not \models A \sqsubseteq B\}
\end{aligned}
$$

- Conjunction of ψ_{1} and ψ_{2} :

$$
\psi_{1} \wedge \psi_{2} \stackrel{\text { def }}{=} \widehat{\psi_{1}} \cup \widehat{\psi_{2}}
$$

- In the example, $\psi_{1} \wedge \psi_{2}$ is inconsistent, since $\psi_{1} \wedge \psi_{2} \supseteq\{$ Melon \sqsubseteq Fruit, Melon \nsubseteq Fruit $\}$

Taxonomy language with negations: $\mathcal{L}_{\mathcal{T}}$
$-\hat{\imath}: \psi \in \mathcal{L}_{\mathcal{T}} \mapsto \widehat{\psi} \in \mathcal{L}_{\mathcal{T}}^{\mathcal{T}}$

Taxonomy language with negations: $\mathcal{L}_{\mathcal{T}}$
$-\hat{\imath}: \psi \in \mathcal{L}_{\mathcal{T}} \mapsto \widehat{\psi} \in \mathcal{L}_{\mathcal{T}}^{\mathcal{T}}$

- $\mathcal{L}_{\mathcal{T}}$'s formulas: $A \sqsubseteq B$ and $A \nsubseteq B$

$$
\begin{array}{llll}
A \sqsubseteq B & \text { means } & \forall x & A(x) \Rightarrow B(x) \\
A \nsubseteq B & \text { means } & \exists x & A(x) \wedge \neg B(x)
\end{array}
$$

Taxonomy language with negations: $\mathcal{L}_{\mathcal{T}}^{\mathcal{}}$
$-\hat{\therefore}: \psi \in \mathcal{L}_{\mathcal{T}} \mapsto \widehat{\psi} \in \mathcal{L}_{\mathcal{T}}$

- $\mathcal{L}_{\mathcal{T}}$'s formulas: $A \sqsubseteq B$ and $A \nsubseteq B$

$$
\begin{array}{llll}
A \sqsubseteq B & \text { means } & \forall x & A(x) \Rightarrow B(x) \\
A \nsubseteq B & \text { means } & \exists x & A(x) \wedge \neg B(x)
\end{array}
$$

- Remark: $\mathcal{L}_{\mathcal{T}}$ is not propositionnaly closed

Expected result of merging, on the example

Definition of a merging operator $(1 / 2)$

- Input: a set $\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ of taxonomies (in practice, for the Kolflow project: $n=2$)

Definition of a merging operator $(1 / 2)$

- Input: a set $\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ of taxonomies (in practice, for the Kolflow project: $n=2$)
- Output: $\Delta\left(\left\{\psi_{1}, \ldots, \psi_{n}\right\}\right)$: a taxonomy

Definition of a merging operator $(2 / 2)$

1. $\psi_{i}:=\widehat{\psi_{i}}$ for each i

Definition of a merging operator $(2 / 2)$

$$
\begin{array}{ll}
\text { 1. } \psi_{i}:=\widehat{\psi_{i}} \quad \text { for each } i & \\
\text { 2. } \alpha:=\bigcap_{i} \psi_{i} & \text { // agreement }
\end{array}
$$

Definition of a merging operator $(2 / 2)$

1. $\psi_{i}:=\widehat{\psi_{i}} \quad$ for each i
2. $\alpha:=\bigcap_{i} \psi_{i}$
3. $\delta_{i}:=\psi_{i} \backslash \alpha \quad$ for each i

Definition of a merging operator $(2 / 2)$

1. $\psi_{i}:=\widehat{\psi_{i}} \quad$ for each i
2. $\alpha:=\bigcap_{i} \psi_{i}$
// agreement
3. $\delta_{i}:=\psi_{i} \backslash \alpha \quad$ for each i
4. $\delta:=\bigcup_{i} \delta_{i}$
// disagreement

Definition of a merging operator $(2 / 2)$

1. $\psi_{i}:=\widehat{\psi_{i}}$ for each i
2. $\alpha:=\bigcap \psi_{i} \quad / /$ agreement
3. $\delta_{i}:=\psi_{i} \backslash \alpha \quad$ for each i
4. $\delta:=\bigcup_{i} \delta_{i}$
// disagreement
5. Candidates $:=\left\{\begin{array}{l|l}\Gamma & \begin{array}{l}\alpha \subseteq \Gamma \subseteq \alpha \cup \delta \\ \Gamma \text { is consistent } \\ \Gamma \text { is maximal for } \subseteq\end{array}\end{array}\right\}$

Definition of a merging operator $(2 / 2)$

1. $\psi_{i}:=\widehat{\psi_{i}}$ for each i
2. $\alpha:=\bigcap \psi_{i} \quad$ // agreement
3. $\delta_{i}:=\psi_{i} \backslash \alpha \quad$ for each i
4. $\delta:=\bigcup_{i} \delta_{i}$
// disagreement
5. Candidates $:=\left\{\begin{array}{l|l}\Gamma & \begin{array}{l}\alpha \subseteq \Gamma \subseteq \alpha \cup \delta \\ \Gamma \text { is consistent } \\ \Gamma \text { is maximal for } \subseteq\end{array}\end{array}\right\}$
6. $\Gamma:=$ choice in Candidates

Definition of a merging operator $(2 / 2)$

1. $\psi_{i}:=\widehat{\psi_{i}}$ for each i
2. $\alpha:=\bigcap \psi_{i} \quad$ // agreement
3. $\delta_{i}:=\psi_{i} \backslash \alpha \quad$ for each i
4. $\delta:=\bigcup_{i} \delta_{i}$
// disagreement
5. Candidates $:=\left\{\begin{array}{l|l}\Gamma & \begin{array}{l}\alpha \subseteq \Gamma \subseteq \alpha \cup \delta \\ \Gamma \text { is consistent } \\ \Gamma \text { is maximal for } \subseteq\end{array}\end{array}\right\}$
6. $\Gamma:=$ choice in Candidates
// magic step!
7. return deductive reduction of Γ

Properties of Δ

- (A1-6): postulates of [Konieczny and Pino Pérez, 2002]

Properties of Δ

- (A1-6): postulates of [Konieczny and Pino Pérez, 2002]
- (A-1), (A-2) and (A-3) are satisfied by Δ
(A-1) $\Delta(E)$ is consistent.
(A-2) If $\bigwedge E$ is consistent then $\Delta(E)=\bigwedge E$.
(A-3) Irrelevance of syntax.

Properties of Δ

- (A1-6): postulates of [Konieczny and Pino Pérez, 2002]
- (A-1), (A-2) and (A-3) are satisfied by Δ
(A-1) $\Delta(E)$ is consistent.
(A-2) If $\bigwedge E$ is consistent then $\Delta(E)=\bigwedge E$.
(A-3) Irrelevance of syntax.
- (A-4), the fairness property, is not satisfied by Δ
(A-4) If $\psi_{1} \wedge \psi_{2}$ is not consistent then $\Delta\left(\left\{\psi_{1}, \psi_{2}\right\}\right) \not \models \psi_{1}$.

Properties of Δ

- (A1-6): postulates of [Konieczny and Pino Pérez, 2002]
- (A-1), (A-2) and (A-3) are satisfied by Δ
(A-1) $\Delta(E)$ is consistent.
(A-2) If $\bigwedge E$ is consistent then $\Delta(E)=\bigwedge E$.
(A-3) Irrelevance of syntax.
- (A-4), the fairness property, is not satisfied by Δ
(A-4) If $\psi_{1} \wedge \psi_{2}$ is not consistent then $\Delta\left(\left\{\psi_{1}, \psi_{2}\right\}\right) \not \vDash \psi_{1}$.
Interpretation: This is due to the lack of disjunction in $\mathcal{L}_{\mathcal{T}}$ that involves the necessity to make (unfair) choices.
Remark: $\nabla:\left\{\psi_{1}, \ldots, \psi_{n}\right\} \mapsto \bigvee$ Candidates satisfies (A-4).

Properties of Δ

- (A1-6): postulates of [Konieczny and Pino Pérez, 2002]
- (A-1), (A-2) and (A-3) are satisfied by Δ
(A-1) $\Delta(E)$ is consistent.
(A-2) If $\bigwedge E$ is consistent then $\Delta(E)=\bigwedge E$.
(A-3) Irrelevance of syntax.
- (A-4), the fairness property, is not satisfied by Δ
(A-4) If $\psi_{1} \wedge \psi_{2}$ is not consistent then $\Delta\left(\left\{\psi_{1}, \psi_{2}\right\}\right) \not \vDash \psi_{1}$.
Interpretation: This is due to the lack of disjunction in $\mathcal{L}_{\mathcal{T}}$
that involves the necessity to make (unfair) choices.
Remark: $\nabla:\left\{\psi_{1}, \ldots, \psi_{n}\right\} \mapsto \bigvee$ Candidates satisfies (A-4).
- (A-5) and (A-6) only proven for binary merging ($n=2$): sorry!
$(\mathrm{A}-5) \Delta(E 1) \wedge \Delta\left(E_{2}\right) \models \Delta\left(E_{1} \cup E_{2}\right)$
(A-6) If $\Delta(E 1) \wedge \Delta\left(E_{2}\right)$ is consistent then

$$
\Delta\left(E_{1} \cup E_{2}\right) \models \Delta(E 1) \wedge \Delta\left(E_{2}\right)
$$

Properties of Δ

- (A1-6): postulates of [Konieczny and Pino Pérez, 2002]
- (A-1), (A-2) and (A-3) are satisfied by Δ
(A-1) $\Delta(E)$ is consistent.
(A-2) If $\bigwedge E$ is consistent then $\Delta(E)=\bigwedge E$.
(A-3) Irrelevance of syntax.
- (A-4), the fairness property, is not satisfied by Δ
(A-4) If $\psi_{1} \wedge \psi_{2}$ is not consistent then $\Delta\left(\left\{\psi_{1}, \psi_{2}\right\}\right) \not \vDash \psi_{1}$.
Interpretation: This is due to the lack of disjunction in $\mathcal{L}_{\mathcal{T}}$
that involves the necessity to make (unfair) choices.
Remark: $\nabla:\left\{\psi_{1}, \ldots, \psi_{n}\right\} \mapsto \bigvee$ Candidates satisfies (A-4).
- (A-5) and (A-6) only proven for binary merging $(n=2)$: sorry!
$(\mathrm{A}-5) \Delta(E 1) \wedge \Delta\left(E_{2}\right) \models \Delta\left(E_{1} \cup E_{2}\right)$
(A-6) If $\Delta(E 1) \wedge \Delta\left(E_{2}\right)$ is consistent then

$$
\Delta\left(E_{1} \cup E_{2}\right) \models \Delta(E 1) \wedge \Delta\left(E_{2}\right) .
$$

- Complexity (of a straightforward algorithm): polynomial in $|\alpha|+$ exponential in $|\delta|$

Conclusion and future work

Conclusion and future work

Conclusion A work at its beginning on merging taxonomies (or revising a taxonomy by another taxonomy)

Conclusion and future work

Conclusion A work at its beginning on merging taxonomies (or revising a taxonomy by another taxonomy)
Future work

Conclusion and future work

Conclusion A work at its beginning on merging taxonomies (or revising a taxonomy by another taxonomy)
Future work

- More studies about the properties of the operator

Conclusion and future work

Conclusion A work at its beginning on merging taxonomies (or revising a taxonomy by another taxonomy)
Future work

- More studies about the properties of the operator
- Integrating the user in the choice process (and reusing previous choices of users)

Conclusion and future work

Conclusion A work at its beginning on merging taxonomies (or revising a taxonomy by another taxonomy)
Future work

- More studies about the properties of the operator
- Integrating the user in the choice process (and reusing previous choices of users)
- Implementation, test, optimisation

